Math 205

Assignment \#2

Due: January 23, 2015

1. Sketch and find the area formed by the line $\mathrm{x}=0, \mathrm{x}=2$ and the curves $y=\sqrt{x+2}$ and $y=\frac{1}{x+1}$. (5 marks)
2. Sketch and find the area formed by the intersection the curves $y=2 x-x^{2}$ and $y=x^{3}$ (5 marks)
3. Question \#11, pg 420 from the $6^{\text {th }}$ edition of your text - Hughes-Hallett or HH (5 marks)
4. Question \#16, pg 447 from the $6^{\text {th }}$ edition of HH (5 marks)
5. Sketch the region between the y-axis, the line $y=2$ and the graph $y=2 x^{2}$. Find the area of this region in the following two ways:
a. Use a Riemann sum built from vertical slices and find the corresponding integral for this area
b. Use a Riemann sum built from horizontal slices and find the corresponding integral for this area
c. Part b should suggest that you could have integrated directly by simply considering y to be the independent variable and by integrating the function $x=\sqrt{\frac{1}{2} y}$. Show how this works and comment on the relationship between $y=2 x^{2}$ and $x=\sqrt{\frac{1}{2}} y$. (10 marks)
6. Shown below are two coloured regions formed by the graphs of $y=x^{2}$, $y=2 x^{2}$ and a "mystery equation" C . For any point P along the middle curve $y=2 x^{2}$ the two regions (A and B) have the same area. Find an equation for curve C that makes this true. (10 marks)

