Physics 241 - Collision in 2D Pre-Lab Assignment

Part 1: Excel Task - CM of a system of 2 particles

System:
Particle A has mass $=1 \mathrm{~kg}$ and position $X=\left[\begin{array}{l}-5 \\ -3\end{array}\right] \mathrm{m}$ and velocity $v=\left[\begin{array}{l}2 \\ 3\end{array}\right] \mathrm{m} / \mathrm{s}$
Particle B has mass $=2.5 \mathrm{~kg}$ and position $X=\left[\begin{array}{c}4 \\ -3\end{array}\right] \mathrm{m}$ and velocity $v=\left[\begin{array}{l}2 \\ 3\end{array}\right] \mathrm{m} / \mathrm{s}$

1. Write an Excel equation that calculates the position of particles $A \& B$ for any time t
2. Write a Excel equation that calculates the position of the $C M$ of the system of particles for any time t
3. Prepare an XY plot of the two particles and the CM over a 10 s interval in increments of 0.5 s
4. E-mail your completed Excel spreadsheet file to me: brian.martin@kingsu.ca

Part 2: To Hand In

1. Use CoM and CoE to predict the final velocity for the particles shown below after they collide elastically where $m_{1}=1 \mathrm{~kg}, \mathrm{~m}_{2}=2.5 \mathrm{~kg}, \mathrm{v} 1=10 \mathrm{~m} / \mathrm{s}, \mathrm{v} 2=20, \theta_{1}=30, \theta_{2}=20$ and $\theta_{1}^{\prime}=40$. Is this collision possible?

2. Assume $e=0$ and repeat the analysis from above. Show that the energy of the $C M$ is conserved.
