Eclipses and Motion of the Sun

Name

Purpose:

- To provide you with necessary skills to understand the conditions necessary to produce lunar and solar eclipses
- To give you practice using Stellarium

Estimated Completion Time: 50 minutes

Questions

1. Some Stellarium stuff..
a. How do you speed up or slow down the rate at which Stellarium animates the motion of the heavens?

$$
\begin{aligned}
& L=\operatorname{spec} d \text { up } \quad K=\text { sidencal rate } \\
& J=\text { slow down }
\end{aligned}
$$

b. How do you advance or go back by 1 hour?

$$
c \operatorname{tr} C \pm
$$

c. How do you advance or go back by one week?

$$
c \operatorname{coc}+] \text { or }[
$$

d. How can you set both the location and any time in Stellarium?
Use LHS undo tool
e. How do you turn on the ecliptic line and the azimuthal grid?

f. How do you "lock on" to an object so that it stays centred at all times? maw chit on resit followed by space-bar
2. Set up Stellarium to re-produce the August 21,2017 eclipse as seen from Idaho Falls, Idaho, US. When does totality begin and end? What was the total duration of the event? Try to be accurate to the nearest second!

3. Now - open the location menu and see how far south or north of this location you can go and still have a total solar eclipse. To assist you also open the time menu and notice that you can step by minutes or even seconds. Run the sun back and forth relative to the moon. Remember - if you can see even a sliver of the sun the eclipse is not total. Estimate the width of the path of totality in km. (Hint: 1 degree of latitude $=126 \mathrm{~km}$)

$$
\begin{aligned}
& \text { latitude }=126 \mathrm{~km}) \\
& \text { at } 44^{\circ} 20^{\prime} N-\text { no eclipse } \equiv \text { Norther boundary } \\
& \text { at } \frac{43^{\circ} 17^{\prime} N}{1^{\circ} 3^{\prime}=w i d R}=126 \mathrm{~km}+\left(\frac{3}{60}\right) / 26 \mathrm{~km}=132 \mathrm{~km} \\
& \text { Path is about } 132 \mathrm{~km} \text { wide }
\end{aligned}
$$

July 23
Congest 21M

see hen
4. Sketch the location of the moon and sun 1 lunar month before, during and 1 lunar month after the eclipse. Why do you use a lunar month?
Then are several ways to do this - eapest jest to use Stellaseuin and inf position? the moon sun ai the sky. Use a leaner month becaud it is the tiric between full phase
5. Sketch a configuration in which the moon is new and a solar eclipse does not occur. Be sure to indicate both the earth-moon orbit as well as the earth-sun orbital plane and where the line of nodes is located.

6. The "Super Moon" lunar eclipse of September 27, 2015 will repeat in approximately 1 Saros. Use Stellarium to find when this event will occur and at what time and what part of the sky it will appear in as seen from Edmonton. How is this related to the Saros?

$$
1 \operatorname{san} 00=18^{4} 11^{d} 1 / 3
$$

So add the to supt 27, 2415 you should se a Aral lunar ectype in 2033 , October 8 at about 4:00 am in Edmonton. Ot is all pant? the same cycle? lunar and poler alignments neursary for an eclypie $=i$ a Sans.

