Questions

1. How many roots do the following equations have?
a. $0=\mathrm{x}^{2}$ two roots
b. $0=8 \mathrm{x}^{4}+5 \mathrm{x}^{3}+\mathrm{x}^{2}-14$ four roots
c. $\mathrm{x}^{3}-\mathrm{x}=5 \mathrm{x}^{5}+\mathrm{x}^{2}$ five roots
2. Use the Rule of Descartes to determine how many positive and negative roots each equation has.
a. $0=x^{3}+4 x^{2}-5 x-3$ one change in sign so one positive root and two times the same sign is found in succession so two negative roots
b. $0=x^{2}+6 x+2$ two times the same sign is found in succession so two negative roots.
c. $0=x^{6}-5 x^{5}+4 x^{4}-3 x^{3}+2 x^{2}-x+6$ six changes in sign so six positive roots.
3. Sketch the graph of the following equation by first creating a table of values.
a. $y=1 / 2 x-6$

X	y
-3	-7.5
-2	-7
-1	-6.5
0	-6
1	-5.5
2	-5
3	-4.5

b. $y=x^{2}+3 x-8$

X	Y
-5	2
-4	-4
-3	-8
-2	-10
-1	-10
0	-8
1	-4
2	2
3	10

c. $y=x^{3}-5 x^{2}+7$

X	Y
-2	-21
-1	1
0	7
1	3
2	-5
3	-11
4	-9
5	7

4. Find the roots or the x-intercepts of the following equations by graphing.
a. $y=x^{2}-5 x-24$
the roots are $x=8$ and $x=-3$
b. $\mathrm{y}=\mathrm{x}^{3}+8 \mathrm{x}^{2}+4 \mathrm{x}-48$
the roots are $x=-6, x=-4$ and $x=2$

