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Chapter Overview
Introduction
In this chapter we examine interference and diffraction of waves moving in two anc
three dimensions and discuss how the observation of interference and diffraction ef-
fects in light offers strong evidence for the wavelike nature of light.

Section Q2.1: Two-Slit Interference
Two-dimensional waves going through a small opening in a barrier (a slit) fan ou
into circular waves (whose crests are circles centered on the slit), as if the slit •were i
point source for the waves. This phenomenon is called diffraction. The superpositior
principle implies that circular waves emerging from two closely spaced slits will in-
terfere with each other in the region beyond the slits where the waves overlap, con-
structively interfering at some points and destructively interfering at others. A
straightforward geometric argument implies that if wave crests emerge from botr
slits simultaneously, we can locate points where the waves interfere constructively b)
using the following equation:

d sin 0nc = Onc = sin (Q2.1)

Purpose: The set of all points at which waves emerging from two slits in a
barrier constructively interfere forms lines that radiate from the point halfway
between the slits. This equation specifies the angles 0nc that those lines make
with the direction perpendicular to the barrier.

Symbols: A. is the wavelength of the waves, d is the center-to-center dis-
tance between the slits, and n is an integer.

Limitations: This equation is accurate only at points very distant from the
slits compared to d. The slits must be arranged so that a given crest of the line
wave moves through both slits simultaneously. The slits need to be compara-
ble in width to A. to generate circular waves that are strong at all physically rea-
sonable angles (see section Q2.3).

This equation also applies to three-dimensional waves (such as sound waves) if wi
measure the waves on a plane that is perpendicular to the barrier containing the slit;
but contains the line connecting the centers of the slits.

Section Q2.2: Two-Slit Interference of Light
In the first decade of the 1800s, Thomas Young was able to demonstrate that light witl
a well-defined color on the rainbow (monochromatic light) emerging from two slit;
in an opaque barrier created an interference pattern that was accurately described b1

equation Q2.1. This provided the first strong evidence that light might consist o
waves (not particles, as Newton had presumed).
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Section Q2.3: Diffraction
Huygens's principle states that each point in the crest of a wave acts as if it were a
point source of circular wavelets, and that the wave's crest at a later time is tangent to
the wavelet crests emitted by all points on the crest at the earlier time. Using this prin-
ciple, we can argue that waves moving through a single slit will create a pattern in-
volving a central range of angles where the waves are strong flanked by fringes of
weaker waves, all separated by specific angles where the waves suffer complete de-
structive interference:

,,d = sin
MA.

(Q2.10)

Purpose: The points at which waves emerging from a single rectangular
slit completely cancel out lie along lines that radiate from the slit's center. This
equation specifies the angles 6,,d between those lines and the direction of
motion of the original waves moving through the slit.

Symbols: X. is the wavelength of the waves, a is the width of the slit, and n
is a nonzero integer.

Limitations: This equation applies to a rectangular slit whose height is
much greater than its width a. It is accurate only at points very distant from the
slit compared to a. The slit must be oriented so that a given wave crest moves
through all parts of the slit simultaneously.

The great majority of the diffracted wave's energy is contained in the central range
—Ou < 0 < Old between the innermost angles of destructive interference: the wave
amplitude in any of the fringes is much smaller than that in the central region.

Section Q2.4: Optical Resolution
Light passing through a circular opening is diffracted into a bright central circle
flanked by dimmer circular fringes, separated by dark rings where completely de-
structive interference occurs. The angle of the innermost ring of destructive interfer-
ence in this case turns out to be

= 1.22-
a

(Q2.13)

This means that light from a point source will spread out into a diffraction pattern
after going through an optical instrument's aperture, blurring the image somewhat
(even if the instrument is perfectly focused). An instrument can resolve two point
sources only if the angle 9 between those sources is such that

• sin
1.22A

a
(Q2.14)

Purpose: This equation specifies the minimum angular separation 9 that
sources can have if they are to be resolved by an optical instrument whose
aperture has diameter a.

Symbols: A. is the average wavelength of the light from the source, and 0\d
is the innermost angle of destructive interference.

Limitations: This equation is an approximation that becomes better if the
instrument's sensor screen is far from the aperture compared to the aperture's
diameter.

Note: Equation Q2.14 expresses what is called the Rayleigh criterion.

Instruments that can resolve sources at this limit are said to be diffraction-limited.
Human eyes are very nearly diffraction-limited when operating in bright light.
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24 Chapter Q2 The Wave Nature of Light

Q2.1 Two-Slit Interference

The phenomenon of diffraction

Figure Q2.1
The diffraction of water waves in a
ripple tank. Line waves moving
from the left disperse in a circular
pattern after going through a
small slit in a barrier.

A qualitative introduction to
two-slit interference

In chapter Ql, we extensively explored the behavior of one-dimensional
waves such as waves on a string or sound waves in a tube. In this chapter, we
will consider the behavior of two-dimensional waves, such as waves on the
surface of a body of water. Three-dimensional waves (such as sound waves)
evaluated on a specified surface in space will behave in the same way.

Imagine a sinusoidal wave in water whose successive crests are parallel
straight lines: we call such a two-dimensional wave a line wave. Imagine
that such a line wave approaches a small gap (usually called a slit) in some
kind of barrier. We empirically observe that waves traveling through a suffi-
ciently small slit spread out to form essentially circular waves (i.e., waves
whose successive crests are concentric circles) centered on the slit, as if the
slit were a point source of waves (see figure Q2.1). This phenomenon is called
diffraction.

One can intuitively see why this has to happen with water waves at least.
As the wave moves through the slit, its sides are sheared off by the slit's
sides. After the wave emerges from the slit, it will spread out to smooth out
the sharp vertical edges where its sides used to be, creating the circular pat-
tern. We will discuss diffraction in greater detail in section Q2.3: for our pur-
poses now, it is enough to know that line waves going through a sufficiently
small slit become circular waves.

With this in mind, imagine that we send line waves through two narrow
slits a short distance apart, and assume that a given wave crest arrives at each
slit simultaneously. The circular waves emerging from the slits will overlap
each other, as shown in figure Q2.2. The superposition principle implies that
the total wave at any given point will be the algebraic sum of the waves from
each slit. At some points in the overlap region, wave crests from each slit will
arrive at the same time, and the sum will be a wave with twice the amplitude
of the waves from each slit: we say that the waves constructively interfere
with each other at such a point. At certain other points, a crest from one slit
will arrive at the same time as a trough from the other, and the sum of the
waves will be zero: we say that the wave destructively interfere with each
other at such a point. Constructive interference and destructive interference
are illustrated in figure Q2.3.

Figure Q2.2
Circular waves emerging from two
closely spaced slits will interfere
with each other in the region
where the waves overlap.

Line
waves

Interfering
circular

Barrier
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(a) \7 \)
Figure Q2.3
(a) If at a given point, wave crests from the two slits arrive at the same time, the
resulting wave at that point has twice the amplitude of the original waves: this is
constructive interference, (b) If a wave crest from one slit arrives at the same time as
the trough from the other, the resulting wave has zero amplitude: this is destructive
interference.

(a)

Figure Q2.4
(a) If we measure the total wave amplitude A along the line BC and plot A2 (a nonnegative measure of the total
wave's strength) as a function of y, we get the graph shown (sideways) at the right edge, (b) A photograph of a
two-slit interference pattern for real water waves showing the lines x, a, a', b, and b'.

An examination of figure Q2.2 shows that the points on the water's
surface where the waves interfere constructively lie on lines that appear to
radiate from a point midway between the two slits (these lines are labeled
x,a,a', b, b' in figure Q2.4). The points where the waves interfere destruc-
tively lie on similar lines. If we were to graph the wave amplitude along the
line marked BC on the diagram, we would find that points of constructive in-
terference alternate with points of destructive interference, as shown in fig-
ure Q2.4a (the graph has been plotted sideways to make its connection with
the diagram clear).
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Figure Q2.5
Assume that P is a point where
the waves interfere constructively.
The extra distance that a wave
from S has to go to get to point P
compared to a wave from Q is the
distance from Sto R. This distance
is roughly equal to dsin$ (where
d is the distance between slits) if P
is very far away compared to d.

Waves interfere
constructively here

Positioned so that QP = RP

Slit • A sin 9

Determining the angles of
maximal constructive "
interference

The equation for the angles of
maximal constructive
interference in a two-slit
interference experiment

We can use a simple geometric argument to determine the angles 9 that
the lines x, a, a', b, V, etc. make with the horizontal direction (x axis).
Consider a distant point P where the waves from each slit interfere construc-
tively, and imagine lines connecting the point P to slits Q and S, as shown in
figure Q2.5. Draw a line from slit Q to a point R on the line from S to P such
that the distance between R and P is the same as the distance between Q and
P (that is, AQKP is an isosceles triangle). The extra distance that a wave from
slit S has to travel to get to P is then the distance between points S and R.

Now, if point P is very far from the slits, lines QP and SP make almost the
same angle 9 with the x axis, the angle 0 in the small triangle AQRS is
approximately equal to 6, and the largest angle in that triangle is approxi-
mately a right angle. This means that if the distance between the two slits
is d, the extra distance that the wave from slit S has to cover to get to point P
is approximately equal to d sin 9.

Now, if P is to be a point where the waves from S and Q interfere con-
structively, then the distance d sin 9 between R and S must be equal to an in-
teger number of the wave's wavelengths, so that crests from Q and S arrive
simultaneously at P. So the condition for constructive interference at point P
is simply

d sin One = = sin-1 (Q2.1)

Purpose: The points at which waves emerging from two slits in a
barrier constructively interfere most strongly form lines that radiate
from the point halfway between the slits. This equation specifies the
angles 9nc that those lines make with the direction perpendicular to the
barrier.

Symbols: A. is the wavelength of the waves, d is the center-to-center
distance between the slits, and n is an integer.

Limitations: This equation is accurate only at points very distant
from the slits compared to d. The slits must be arranged so that a given
crest of the line wave moves through both slits simultaneously. The
slits need to be comparable in width to A to generate circular waves
that are strong at all physically reasonable angles (see section Q2.3).

The value n — 0 yields an angle % = 0, which corresponds to the line of con-
structive interference along the x axis in figure Q2.4. The values n = ±1 yield
the angles 9\ and 9-\ of lines a and a', the values n = ±2 yield the angles
Q-ic and 92c of the lines b and V, and so on.
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Exercise Q2X.1
Argue that in the limit that the large angles in the isosceles triangle APQR are
roughly 90° (that is, the angle ZQPR « 0), then <9 « 0.

Exercise Q2X.2

If the distance between point P and the slits is about 3 m and the distance d
between slits is 4 cm, then the large angles in triangle APQR are actually
about 89.6°. What is the difference between 9 and </> in this case?

Example Q2.1 Interference of Water Waves

Problem Imagine that line water waves with a wavelength of 1.2 cm mov-
ing in the +x direction go through two slits in a barrier parallel to the y axis.
The slits are separated by 4.0 cm (center to center). Imagine that we measure
the wave amplitude along a line parallel to the barrier but 1.0 m from it. At
what points along this line will the waves constructively interfere most
strongly?

Translation The diagram below shows the situation and defines some use-
ful symbols. Note that I have defined the midpoint between the slits to have
coordinate y = 0.

A = 1.2 cm
H h-

- Barrier

1

Id = 4cm

-D = 1.0m-

Line

Line waves

Model Since D — 1.0 m :» 4.0 cm = d, the condition on equation Q2.1 is
satisfied here. We can thus use that equation to find the angles 9nc =
sin~1(nA./d) of lines along which maximal constructive interference occurs.
Basic trigonometry implies that these lines intersect the line along which we
measure the waves at positions yn = Dtan#,,c. We know D, A, and d, so we
know enough to solve for 9nc and yn for various values of n.

Solution The specific angles are

n = 0: 00c = 0

9±ic = sin = sin
4.0cm /

= sin"1 0.30 = ±17.5°

n = ±2:

n ~ ±3:

0±2c = sin"1
d J

= sin'1 (±0.60) = ±37° (Q2'2)

= sm"1^^^ = sin"1(±0.90) = ±64°
\ I
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Values of n such that \nkjA | > 1.0 yield no meaningful solution for Onc, so the
series stops here. The corresponding positions along the measurement line
where the waves are strongest are

n = 0: yo - Dtan00c =0
n = ±1: y±i = Dtan6>±lc = (1.0 m) tan(±17.5°) = ±0.32 m
n = ±2: y±2 = DtanO±2c = (1.0 m) tan(±37°) = ±0.75 m ( '
n = ±3: y±3 = D tan0±3c = (1.0 m) tan(±64°) = ±2.05 m

Evaluation These results have the right units and are plausible.

While so far we have considered only water waves, the argument leading
to equation Q2.1 applies to waves of all kinds, including three-dimensional
waves (such as sound waves) as long as we evaluate the waves in a plane that
contains the waves' direction of motion as well as both slits or sources, and as
long as wave crests emerge from the slits or sources simultaneously.

Exercise Q2X.3

Imagine that you place your stereo speakers outside (to provide music for
a party). They are placed distance of 1.5 m apart along a line we will call
the y axis. Imagine that both speakers are reproducing the sound of a female
singer holding a solo high A (880 Hz) for several seconds. Consider a
line parallel to the y axis but 8.0 m from it. At what points along this second
line would the sound be loudest? At what points would it be weakest?

Q2.2 Two-Slit Interference of Light

Studying light has motivated Few physical phenomena are so common and important to our daily experi-
revolutions in physics ence as light. Yet light is so subtle that understanding its nature has challenged

the scientific community for thousands of years. Newton himself wrote a
book on the subject (Opticks, 1704), but this book is not as famous as his work
on mechanics because his particle model of light was seemingly contradicted
by research done in the early 1800s by Young, Fresnel, Fitzeau, Lloyd, and
Kirchhoff, which demonstrated in what seemed to be a fairly conclusive fash-
ion that light was a wave. Maxwell's greatest triumph was his claim (later
supported by experiment) that light was in fact an electromagnetic wave. This
triumph, in combination with work in the late 1800s that established the frame
independence of the speed of light, prompted Einstein to develop the theory
of relativity. At roughly the same time, research into how atoms absorbed and
emitted light was beginning to lay the foundations for quantum mechanics.
The theory of quantum electrodynamics that eventually resulted served in
turn as the template for those who developed quantum field theories for the
weak and strong nuclear interactions in the 1970s. The study of light (and the
challenges it raised) thus provided either the impetus or the template for es-
sentially all the major revolutions in physics since the 1840s!

It is appropriate, therefore, that we start our investigations of quantum
mechanics by studying light. My goal in this chapter is to bring your under-
standing of light up to where most physicists stood in the late 1800s, the eve
of the quantum revolution. At this time, physicists were firmly convinced that
light was a wave. What was the evidence supporting such a conclusion?
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(a) (b)
Opaque mask

•with slits
Display
screen

Figure Q2.6
(a) An opaque mask with two slits, (b) A top view of Young's two-slit interference
experiment.

Light source

(a)
Opaque mask

with slits

Display
screen

Intensity
•«

Light source

(b)
Opaque mask

with slits

Display
screen

iff »W*I ftfir Iff
(c)

Figure Q2.7
(a) The outcome of the Young
double-slit experiment predicted
by Newton's particle model of
light, (b) The actual outcome of
the Young double-slit experiment,
(c) A photograph of an actual two-
slit interference pattern.

A Victorian physicist might have pointed to the two-slit interference
experiments performed by Thomas Young during the first decade of the
1800s. Young directed a beam of light having essentially a single color
(monochromatic light) on an opaque mask in which two narrow slits had
been cut, as illustrated in figure Q2.6a. Light that passes through the slits
falls on a screen placed some distance behind the mask, as illustrated in
figure Q2.6b.

If light consisted of particles (as Newton thought), particles passing
through the slits would travel in straight lines to the second screen, implying
that we would see two isolated bright lines on the display screen, one for
each slit, as shown in figure Q2.7a. If we take into account the fact that parti-
cles of light can follow slightly different straight paths from the source to the
screen through each slit, we might expect the images of the slits be somewhat
blurred; but there should be two and only two slit images, and a plot of the
intensity of light as a function of distance y along the display screen would
look something that shown at the far right of figure Q2.7a.

If we do this experiment, though, we see not two, but many bright spots,
as shown in figure Q2.7b. The spot spacing does depend on the slit separation,

Young's two-slit interference
experiment

What a particle model of light
predicts

The actual results
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A wave model successfully
explains these results

but reducing the slit separation counterintuitively increases the separation of
the bright spots! We also find that the spot separation depends on the color of
the light used, decreasing as one goes from red to violet.

These results are clearly incompatible with a simple particle model of
light, but are easily explained by a wave model. If monochromatic light con-
sists of waves having a well-defined wavelength, Young's two-slit light inter-
ference experiment is essentially the same as the two-slit water wave inter-
ference experiments considered in section Q2.1. We can interpret the bright
and dark spots on the screen as positions where light waves interfere con-
structively or destructively, respectively. The interference pattern displayed
in figure Q2.7b is qualitatively quite similar to the one for water waves shown
in figure Q2.4, and quantitative measurements show that equation Q2.1
accurately describes how the positions of these peaks change as we vary the
distance between slits. This experiment therefore offers compelling evidence
that light is a wave.

Example Q2.2 What Is the Wavelength?

Problem Imagine that we have a laser that produces monochromatic red
light of an unknown wavelength. We allow the laser's light to fall on a pair of
slits whose center-to-center distance is d — 0.050 mm, and we display the re-
sulting interference pattern on a screen a distance D = 3.0 m from the slits. If
the distance between adjacent spots on the screen has a very nearly constant
value of s =3.8 cm for spots near the central dot, what is the laser light's ap-
proximate wavelength?

Translation The drawing below illustrates the experiment.

Adjacent
bright spots

Mask with
two slits

Central
bright spot

-D = 3.0m-

J5.8cm

Screen

Model In equation Q2.1, the central maximum will correspond to n = 0
(since n = 0 implies 9=0). The angle between the line connecting the slits
with the central maximum and that connecting the slits and a bright spot at
position yn is

D D
(Q2.4)

where I have used the fact that tan (9 ~ 0 for small angles measured in radi-
ans. Note that for the n — 1 spot, the angle comes out to be 0.038 m/3.0 m =
0.0127 rad = 0.7°, so the small-angle approximation will be justified in this
case for spots with reasonably small n. For small angles we also have
sin# ^ 9, so equation Q2.1 implies that

D
(Q2.5)
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Note that in this approximation yn a n, so the spots are evenly spaced. If
we define s = yM+1 — yn, then equation Q2.5 implies that in the small-angle
limit,

(n + 1)A. nk ^ yn+l yn A.
d ~ ~ d ' D D ' d

Since we know d, s, and D, we can solve for A,.

s
D

(Q2.6)

Solution Doing this, we find that

sd (0.038 ;m) (0.05 x l m)
D 3.

= 6.3 x 1Q-7 m = 630 nm (Q2.7)

Evaluation Note that the units are correct. The small value of this wave-
length helps explain why wave aspects of light are not immediately obvious.

Note how the small-angle approximation helps simplify the mathemat-
ics in this example. Many practical interference experiments with light in-
volve small angles, so equation Q2.6 is a variation of equation Q2.1 worth
remembering.

Interference experiments provide a practical means of measuring the
wavelength of light because they link A. to quantities such as d and D that are
big enough to measure with a ruler. Such experiments show that the wave-
lengths of visible light range from about 700 nm (deep red) to 400 nm (deep
violet).

Such experiments allow us
to measure the wavelength
of light

Exercise Q2X.4

Imagine that we replace the slits described in example Q2.2 with slits whose
center-to-center spacing is 0.030 mm. Find the spacing between adjacent
bright spots now. (Hint: You should find that the spacing gets larger.)

Exercise Q2X.5

Explain in words why the separation between the displayed bright spots
increases when the separation between the slits decreases. Do not appeal to
equations: rather, base your explanation on figure Q2.5.

Exercise Q2X.6

Imagine that we use a different laser in the experiment described in exer-
cise Q2X.4, a laser that produces green light with a wavelength of 510 nm.
What is the spacing between bright sp1 ots now?

Q2.3 Diffraction

You may have noticed that not all the dots in the interference pattern shown
in figure Q2.7c are equally bright. To explain why this is so, we need to bet-
ter understand what happens to waves going through a single slit.

We can understand this most easily with the help of a simplified model
of wave propagation that we call Huygens's principle (after the Dutch

Huygens's principle
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Original
wave crest

Wave crest
after time

Af

Figure Q2.8
Propagation of a line wave
according to Huygens's principle.

physicist Christian Huygens who first proposed this model in 1678). This
principle states

We can model each point on a given wave crest to be a point source
of circular (or spherical) wavelets. At a time Af later, the new posi-
tion of the wave's crest will be a curve (or surface) tangent to the
wavelet crests.

This principle essentially expresses the idea that when each point in a
medium is disturbed by the wave, the effects of that disturbance move radi-
ally away from that point as time passes. For example, if a bit of water is
lifted above the surface of a pond by the crest of a wave, the water seeks to
sink back downward; as it does, it pushes water on all sides outward, creat-
ing a circular ripple. The sum of all these circular ripples is what forms the
crest as it moves forward.

Figure Q2.8 illustrates how this works for a line wave. We imagine
each point on the line wave to be a point source for a circular wave (only a
few points are shown for the sake of clarity). After time At, the wave from
each point has expanded to a radius of r = v At, where v is the speed at
which waves travel in the medium in question. The tangent to these circular
waves forms another straight line.

Exercise Q2X.7

Show, using the same approach, that the crest of an initially circular wave
will spread out to form a larger circle as time passes.

An analysis of what happens
to a wave passing through a
single slit

Now consider the situation shown in figure Q2.9a. Imagine that line
waves with a well-defined wavelength go through a slit of width a, and
imagine that we measure the wave amplitude at various points P along the
y axis, which is (at its closest) a distance D » a from the slit. When D is very
large, the lines that waves must follow to get to P from various points within
the slit are approximately parallel lines, as shown in figure Q2.9b.

Now, according to Huygens's principle, we can imagine that every point
along the crest of a wave passing through the slit emits a circular wave. To
keep things relatively simple, we consider in figure Q2.9b only 12 points
equally spaced along the slit.

Figure Q2.9
(a) A top view of a single-slit
diffraction experiment, (b) A
magnified image of the slit
region in this experiment. Here
we treat the wave crest in the
slit as if it were 12 points that
emitted circular waves. Each
circular wave contributes to the
wave at point P.

Slit

Region magnified
at right

J- 7

9
10
11

-*- 12

(a) (b)

- To point P

-Wave crest at time t = 0

- To point P

-dsinQ
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When 9 = 0 (P is directly in the +x direction relative to the slit), the dis-
tance from each point to the final destination at point P is equal, so the
wavelets from each point interfere constructively when they reach P. But as
we move our measurement point P up the y axis, the angle 9 increases, and
the distance that the wavelets have to move from each point to get to point
P is no longer the same. In particular, if the distance between a given pair
of points in the slit is d, then the extra distance s that a wavelet from the
lower point has to go to get to P beyond the distance to P from the upper
point is

s=dsin0 (Q2.8)

Thus as 6 increases, the wavelets from each point get more and more out of
phase with each other, and thus less and less strongly reinforce each other.
The total wave amplitude will thus decrease as we move point P up the y axis.

When we reach the angle where a sin# = A., something interesting hap-
pens. Note that the distance between point 1 and point 7 is \a, as is the dis-
tance between points 2 and 8, points 3 and 9, and so on. This means that the
wavelet from point 7 will have to travel a distance s = \a sin 9 = \ farther to
get to P than the wavelet from point 1 does, and similarly for points 8 and 2,9
and 3, and so on. Since one-half of a wavelength from a wave crest is a trough,
the crest from point 1 will be canceled by a trough from point 7, the crest from
point 2 by a trough from point 8, and so on. In short, the wavelet from each
point in the upper half of the slit is exactly canceled by that from a point on the
bottom half! We will therefore detect nothing at the angle 6\d such that

a sin 6id = A.
. _ j A

= sm -
a

(Q2.9)

(The subscript tells us that this is the first angle of complete destructive inter-
ference.)

As we move point P still farther up the y axis, we begin to see waves
again at point P, but they are much weaker. For example, consider the angle
such that a sin# = (3/2) X. In this case, the wavelet from point 1 cancels the
wavelet from point 5, since the distance between points 1 and 5 is \a, so
s = |asin# = jA again (the condition for destructive interference). Simi-
larly, the wavelet from point 2 cancels that from point 6, the wavelet from
point 3 cancels that from point 7, and the wavelet from point 4 cancels that
from point 8. This leaves points 9 through 12 contributing to the net wave at
point P at this angle. But even wavelets from these points do not completely
reinforce each other: wavelets from point 9 are almost completely out of
phase with those from point 12, so the net wave at point P at this angle
comes mainly from points 10 and 11. Thus it has about 2/12 = 1/6 of the
amplitude of the wave at 9 = 0, where all 12 points contribute strongly. (A
more exact calculation yields a ratio of 1/4.7.) The point is that the wave is
generally much smaller in amplitude for angles larger than 0\d than it was
near 0=0.

Exercise Q2X.8

Argue that the waves again cancel completely at the angle #2d such that
sin$2d = 2A/a. (Hint: The wavelets from each point again cancel in pairs.
Which points cancel which points in this case?)

Indeed, you can argue in a similar way that we will have completely de-
structive interference at any angle satisfying
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The equation describing the
angles of completely
destructive interference in
single-slit diffraction

The wave model leads to
results consistent with
experiment

nd = Sin
-1 nk

(Q2.10)

Purpose: The points at which waves emerging from a single rectan-
gular slit completely cancel out lie along lines that radiate from the slit's
center. This equation specifies the angles 9nij between those lines and the
direction of motion of the original waves moving through the slit.

Symbols: A. is the wavelength of the waves, a is the width of the slit,
and n is a nonzero integer.

Limitations: This equation applies to a rectangular slit whose
height is much greater than its width a. It is accurate only at points very
distant from the slit compared to a. The slit must be oriented so that a
given wave crest moves through all parts of the slit simultaneously.

This equation looks very much like equation Q2.1 for two-slit interference.
Note, however, that equation Q2.1 refers to two-slit interference, while equa-
tion Q2.10 describes single-slit diffraction. Even more important, equa-
tion Q2.1 specifies angles along which the waves constructively interfere, but
equation Q2.10 describes angles along which the waves destructively interfere
(as the subscripts on the angles indicate)! Be aware of these differences!

If the wave model of light is correct, then light waves moving through a
narrow rectangular slit must behave as we have argued. The brightness of any
point on the display screen will depend on the energy per unit time per unit
area (i.e., the intensity) of the light at that spot, which is proportional to the
square of the wave amplitude. Figtire Q2.10a shows a graph of the predicted
intensity of light versus sin 9 for light moving through a narrow slit.

Figure Q2.10b shows a photograph of light emerging from a single slit.
We can see that this pattern agrees completely with the prediction of the wave
model. Experiments concerning the diffraction of light done in the early 1800s
provided some of the crucial evidence that finally convinced the physics
community that Young was correct about light being a wave.

Note that virtually all the light energy is contained within the angular
range of —Q\& to +0u between the first angles of completely destructive in-
terference. The bright regions flanking this central region (which are called
fringes of the diffraction pattern) contain comparatively small amounts of
energy.

Figure Q2.10

(a) A plot of wave intensity versus
sin 0 for the waves of wavelength
A, emerging from a single slit of
width a. (Note that if 6 is small,
sin 9 «s 0: in such a case, this will
essentially be a plot of intensity
versus 8) (b) The actual diffraction
pattern produced by light going
through a narrow slit. [The
spacing between fringes in this
photograph is about half of that
shown in the graph in part (a).]

sine
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Example Q2.3 Diffraction of Light

Problem Light with a wavelength X = 633 nm goes through a narrow slit of
width a and is then projected on a screen D — 3.0 m from the slit. The central
bright region displayed on the screen is w — 2.0 cm wide. What is a?

Model The total angle A.0 spanned by the central maximum goes from —Bid
to +0id, where $1(j = sin(^/a) (see equation Q2.8). Since angles are going to
be small here, we can again use the approximation sin 9 xi tan 6^9, so
we get

~ = 2~ = 2tan6»u « 2<9lri = 23m-1 - w —
D D a a

Since we know w, D, and A, we can solve for a.

Solution: Doing this, we get

^ 2_DX = 2(3.0*0(633 x IP'9 m) = 1Q_4

w; 0.020 rrt

(Q2.ll)

(Q2.12)

Evaluation: The units are right, and the result seems reasonable for a nar-
row slit.

Now we can understand the variation in the brightness of spots in the
two-slit interference pattern. Light emerging from each slit fans out accord-
ing to the single-slit diffraction pattern. If the two slits are the same width and
are close together compared to the distance to the screen on which the pat-
terns are to be displayed, their single-slit interference patterns will almost ex-
actly overlap on the screen. If there were no interference between the waves
emerging from two slits, the displayed intensity pattern would be essentially
that of a single slit, as displayed in figure Q2.11a. Since the brightness of a
bright spot in the too-slit interference pattern will depend on how much light
is there in the first place to constructively interfere, the brightness of such a
spot will be modulated by how bright the light in the single-slit pattern is at
that point, as illustrated in figure Q2.11b.

The phenomenon of diffraction also explains why you can hear someone
talking around a corner even when you can't see the person. Equation Q2.10
also suggests that longer wavelengths will diffract more widely than shorter

Explaining the brightness
variation in the two-slit
pattern

Why you can hear someone
around a corner

sine
(a) -2A/fl

(b) -2A/a -A/a 2A/a

Figure Q2.11
(a) A graph of wave intensity
versus position for light emerging
from a single slit of width a. (b) A
graph of the wave intensity versus
position for light emerging from
two slits of width a separated by
distance d = 5a. Since the light
required to generate the two-slit
interference pattern has to come
from the light provided by each
single slit, the single-slit pattern
provides the maximum possible
intensity for the two-slit pattern.
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wavelengths. Sound waves have wavelengths on the order of magnitude of
1 m, so when sound waves go through an open doorway (which is also about
a meter wide), they diffract pretty well in all directions, but light (whose
wavelength is much shorter) is hardly diffracted at all. This effect also ex-
plains why voices around a corner may sound "muffled": the higher-
frequency components of sound that add sharpness and clarity to a voice
may not diffract as well to your position as lower-frequency components do.

Diffraction by a circular
aperture

Figure Q2.12
The diffraction pattern created by
light after it has gone through a
small circular aperture.

Implications for resolution of
optical instruments

Rayleigh's criterion for
resolving point sources

Q2.4 Optical Resolution

Figure Q2.10 displays the diffraction pattern of light going through a rectan-
gular slit that is much longer than its width a. It is more difficult to calculate
what happens to light when it goes through a circular aperture, but fig-
ure Q2.12 shows the result: -we see a bright circular central region flanked by
weaker circular fringes. It turns out that the angle of the innermost dark ring
where complete cancellation occurs is given by

sin#irf = 1.22-
a

(Q2.13)

where a in this case is the aperture's diameter. This angle is only a bit larger
than predicted by equation Q2.9.

Exercise Q2X.9

A laser on the International Space Station emits green light of wavelength
510 nm from a hole 5.0 mm in diameter. When this beam reaches the ground
180 km below, what is the approximate diameter of the laser beam's central
region?

The fact that light is diffracted by a small opening has important impli-
cations for the ability of an optical instrument (such as a telescope or an eye)
to resolve two distant objects whose angular separation is small. For exam-
ple, imagine looking at two point sources of light (perhaps two stars) sepa-
rated by a small angle 9, as shown in figure Q2.13. The light from each source
is diffracted somewhat as it goes through your pupil. This means that even if
your lens focuses the light as well as possible, the light from each source cre-
ates a small but spread-out diffraction pattern on your retina.

Figure Q2.14 shows what the resulting diffraction patterns might look
like on your retina for different angular separations between two sources.
One can just begin to see that the sources are separate objects in the case
shown in figure Q2.14b, where the central maximum of one diffraction pat-
tern overlaps the first first minimum of the other. Therefore, we can see the
sources as separate only when their angular separation 0 is such that

sin l (Q2.14)

Purpose: This equation specifies the minimum separation angle 9
that sources can have if they are to be resolved by an optical instrument
whose aperture has diameter a.



Q2.4 Optical Resolution 37

Light from
star A

Figure Q2.13
If two stars are separated by a sufficiently large angle, then the
diffraction patterns produced on the retina when the light from the
stars goes through the pupil do not overlap very much, so the retina
will register these images as being separate. (The "bumps" on the
retina in this drawing are meant to indicate graphs of the light
intensity versus position on the retina.) If, however, the angle
becomes much smaller, the diffraction patterns will begin to overlap,
causing the two stars to look like a single blob.

Symbols: A is the average wavelength of the light from the source,
and 9\d is the innermost angle of destructive interference.

Limitations: This equation is an approximation that becomes bet-
ter if the sensor screen is far from the aperture compared to the aper-
ture's diameter.

Note: Equation Q2.14 expresses what is called the Rayleigh
criterion.

We call an instrument good enough to resolve sources separated by this angle
diffraction-limited. The resolving power of a real instrument may be worse
because of other factors, but it cannot be better than this. Since our ancestors
depended so much on their eyes for staying alive, evolution has given us eyes
that operate pretty close to the diffraction limit in daylight. The Hubble tele-
scope, by virtue of its positidn above the atmosphere, also operates at close to
the diffraction limit of its aperture. (The resolution of ground-based tele-
scopes is limited more by unavoidable turbulence in the earth's atmosphere.)

• •

(a)

Figure Q2.14
What the diffraction patterns
for two point sources look
like as their angular
separation decreases. In (b),
the angular separation of the
sources is such that the
central maximum of one
pattern overlaps the first
minimum of the other
pattern. In this case, the
sources can be barely
distinguished as being
separate.

Example Q2.4 The Resolving Ability of the Human Eye

Problem At night, the pupil of a typical person's eye opens up to as wide as
8 mm. What would be the smallest possible angular separation between two
stars in the sky that the human eye might be able to resolve?

Model In this case, the aperture that the light goes through is the pupil, so
a = 0.008 m. The eye is most sensitive to light whose wavelength is in the cen-
ter of the visual range, so let's estimate that A ~ 550 nm. If we assume that
the eye is diffraction-limited, this gives us enough information to apply the
Rayleigh criterion. Since the angle will be pretty small, we can also use the
small-angle approximation sin 6 ~ 6.
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Solution Equation Q2.13 implies that

2X 1.2A. 1.2(550 x 10-9jrt)
: sin = 8 x

= (8 x 10~5 jatJ)
360s*

0.008 jtf

3600 arc seconds \5 (rad)
20 arc seconds

(Q2-15)

Evaluation I have expressed the answer to only one significant digit be-
cause the approximations we have made are not more accurate than that. For
comparison, earth-based telescopes are capable of resolving stars on the
order of 1 arc second apart, while the Hubble telescope can in principle re-
solve stars on the order of 0.1 arc second apart.+

TWO-MINUTE PROBLEMS

Q2T.1

Q2T.2

Q2T.3

Waves from two slits S and Q will destructively in-
terfere and cancel at a point P if the distance be-
tween P and S is larger than the distance between Q
and S by
A. X
B. nX

C.

D.

E.

F.

— (where n is an integer)

(n + |)X (where n is an integer)

X

4
Other (specify)

Consider a two-slit interference experiment like the
one shown in figure Q2.6b. The distance between
adjacent bright spots in the interference pattern
on the screen (A) increases, (B) decreases, or (C) re-
mains the same if
(a) The wavelength of the light increases.
(b) The spacing between the slits increases.
(c) The intensity of the light increases.
(d) The width of the slits increases.
(e) The distance between the slits and the screen

increases.
(f) The value of n increases (careful!).

We have seen that Huygens's principle implies that
a circular wave front will remain circular and a line
wave front will remain linear as time passes. Imag-
ine that at an instant of time we set up a wave front
that is shaped like a square moving away from its

center. Huygens's principle implies that this wave
front will also maintain its square shape as time
passes, true (T) or false (F)?

Q2T.4 Imagine that sound waves with a certain definite
wavelength flow through a partially opened sliding
door. If the door is closed somewhat further (but
not shut entirely), the angle through which the
sound waves are diffracted
A. Decreases
B. Increases
C. Remains the same
D. Depends on quantities not specified (explain)

Q2T.5 Imagine that sound waves with a certain definite
wavelength flow through a partially opened sliding
door. If the wavelength of the waves increases, the
angle through which the sound waves are diffracted
A. Decreases
B. Increases
C. Remains the same
D. Depends on quantities not specified (explain)

Q2T.6 Line waves with wavelength X going through a slit
with width a will be diffracted into circular waves
with approximately equal amplitude in all forward
directions
A. Always
B. Never
C. Only if a » A
D. Only if a « X

tThe measured visual acuity of the eye at night is actually more like 200 arc s. This is so because the dark-adapted eye averages the response
of many retinal cells in order to be able to respond to very dim light. This averaging reduces visual acuity. In bright light, the human eye does .
perform at close to the diffraction limit.
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Q2T 7

Q2T 8

O2T 9

^ me two s^ts m a twQ'Slit interference experiment
were so far apart that their diffraction patterns did
not overlap, the pattern displayed would be consis-
tent with a particle model of light, T or F?

Consider an experiment where we send monochro-
matic light to a distant screen through a single
narrow slit. The distance between adjacent dark
fringes in the diffraction pattern displayed on the
screen (A) increases, (B) decreases, or (C) remains
the same if
(a) The wavelength of the light increases.
(b) The intensity of the light increases.
(c) The width of the slit increases.
(d) The distance between the slit and the screen in-

creases.
(e) We look at fringes farther from the central max-

imum.

m the region where their beams overlap, two car
headlights will create a clear interference pattern on
a distant screen, T or F?

Q2T.10

Q2T.11

Q2T.12

If we shine white light through two slits onto a dis-
tant screen, we will see a clear interference pattern
on the screen, T or F?

Evolution has given eagles and other predatory
birds very sharp eyesight. A friend claims to have
read that an eagle's eye has 10 times the resolution
of a human eye in broad daylight. This is physically
impossible, T or F?

With an optically perfect 200-power telescope with
a 1.5-in.-diameter tube, you can resolve objects that
are roughly how many times closer together than
you could with your naked eye? (Choose the closest
response, and ignore air turbulence.)
A.
B.
C.
D.
E.
F.

500 times
200 times
100 times
20 times
5 times
No better at all

HOMEWORK PROBLEMS

Basic Skills

Q2B.1

Q2B.2

Q2B.3

Q2B.4

Q2B.5

Water waves with an amplitude of 0.80 cm and a
wavelength of 2.5 cm go through two openings in a
barrier. Each opening is 1.2 cm wide, and the open-
ings are separated by 12.0 cm (center to center).
Find the angles of the lines along which the -waves
constructively interfere.

Sound waves with a frequency of 320 Hz are emit-
ted by two speakers 44 cm wide and 3.5 m apart.
Find the angles of the lines along which the waves
from the speakers constructively interfere (assum-
ing that wave crests are emitted by the speakers
simultaneously).

Imagine that the distance between two slits in a
given experiment is d = 0.050 mm and that the
distance between the slit mask and the display
screen is D = 1.5 m. If the distance between adja-
cent interference bright spots (for low n) is about
2.0 cm on the screen, what is the wavelength of
the light involved?

Imagine that the distance between two slits in a
given experiment is d = 0.040 mm and that the dis-
tance between the slit mask and the display screen
is D = 2.5 m. If the distance between adjacent inter-
ference bright spots (for low ri) is about 3.0 cm on
the screen, what is the wavelength of the light
involved?

Imagine that the light source for a two-slit interfer-
ence experiment provides red light with a wave-
length of 633 nm. If this light is sent through a pair

Q2B.6

Q2B.7

Q2B.8

Q2B.9

Q2B.10

of slits separated by a distance d = 0.040 mm, find
the spacing between adjacent bright spots of the
interference pattern when it is displayed on a
screen 3.2 m from the slits.

Imagine that the light source for a two-slit interfer-
ence experiment provides yellow light with a wave-
length of 570 nm. If this light is sent through a pair
of slits separated by a distance d = 0.030 mm, show
that the angle between the bright spot correspond-
ing to n = 0 and the bright spot corresponding to
« = 1 is about 1.1°. If the display screen is a dis-
tance D = 2.4 m from the slits, show that the dis-
tance between these bright spots on the screen is
about 4.6 cm.

Explain in terms of wave concepts why sounds
emitted from a person's mouth can be heard almost
equally well in all directions.

As you are just about to round a corner, you hear
two people talking some distance beyond the cor-
ner. One has a very deep voice, and the other has a
high voice. Which voice more easily carries around
the corner? Explain.

A stereo speaker 30 cm wide sounds a pure 1250-Hz
note. Within what angle from the forward direction
will you be able to hear this note (in a perfectly ab-
sorbing room)?

Sound waves from a stereo inside a house go
through a partially open sliding patio door to the
yard outside. If the door opening were 12 cm wide,
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what would be the lowest frequency of sounds that
would not be diffracted in essentially all directions
through that opening?

Q2B.11 Ocean waves with an amplitude of 2.0 m and a
wavelength of 15 m go through a 55-m opening in a
breakwater that is shaped like a line and protects a
body of water shaped like a square 800 m on a side
between the breakwater, the beach, and two rocky
ridges on either side. Draw a sketch of this situation
that accurately and quantitatively illustrates the
angle through which the waves are diffracted.
(Also show your work in computing that angle.)
Indicate some points on your sketch where boats
within the breakwater will feel little wave motion.

Q2B.12 Light with a wavelength of 633 nm goes through a
narrow slit. The angle between the first minimum
on one side of the central maximum and the first
minimum on the other side is 1.2°. What is the width
of the slit?

Q2B.13 Light of wavelength 441 nm goes through a narrow
slit. On a screen 2.0 m away, the width of the central
maximum of the diffraction pattern is 1.5 cm. What
is the width of the slit?

Q2B.14 The beam of light emitted from a certain laser has a
wavelength of 633 nm and an initial diameter of
1.0 mm. What is the diameter of the beam when it
reaches the moon (384,000 km away)?

Synthetic

Q2S.1 You are setting up a pair of PA speakers on a field in
preparation for an outdoor event. Each speaker is
0.65 m wide, and the speakers are separated by
8.2 m. To test the speakers, your coworker plays a
single tone through the speakers whose frequency
is 440 Hz. You are standing 52 m directly in front of
the speakers and facing them. Roughly how far
would you have to walk to your left or right to hear
the sound amplitude drop almost to zero? How
much farther would you have to go to hear the
amplitude go back to its original strength?

Q2S.2 Two radio antennas 60 m apart broadcast a synchro-
nized signal with a frequency of 100 MHz. Imagine
that we have a detector 5.0 km from the antennas. At
this distance, what is the separation between adja-
cent "bright spots" in the interference pattern along
a line parallel to the line between the antennas?

Q2S .3 If we hold two flashlights parallel, will they create a
clear interference pattern in the region where the
two beams overlap? Carefully explain at least two
reasons why not.

Q2S.4 When you connect stereo speakers to an amplifier,
it is important that the speakers be connected in

phase, so that if a signal from the amplifier pushes
the cone of one speaker out at a given time, it
pushes the cone of the other speaker out at the same
time. Reversing the two wires connecting one of the
speakers to the amplifier will make it so that the
same signal pushes one speaker cone out but pulls
the other one in. Explain why this could be a prob-
lem, or at least undesirable. Would you still be able
to hear the music?

Q2S.5 Two sets of sinusoidal line waves approach each
other from opposite directions. These waves have
exactly the same amplitude and wavelength. When
they overlap, will they constructively interfere, can-
cel each other out, or do something else? Describe
as carefully as you can what will happen when
these waves meet.

Q2S.6 How big a speaker would you need to create a di-
rected beam of sound waves with a frequency of
440 Hz whose total width increases by only 5 m for
every 100 m the beam goes forward?

Q2S.7 Television sets (particularly older models) produce
a "whistle" sound at about 15,800 Hz (this is the
frequency with which the electron beam sweeps
across the face of the screen). This sound is audible
to most youngsters and adults who haven't lost
their high-frequency hearing. Imagine that a TV set
is on (with the "mute" on) in your sister's bedroom
as you walk by in the hallway. If your sister's door
is ajar, leaving an opening 6.0 cm wide, and your
ear is about 1.5 m from the door as you walk by, for
about how many centimeters of your walk will you
be able to hear the TV "whistle" (if you can at all)?

Q2S.8 The two headlights on a certain approaching car are
1.4 m apart. At about what distance could you
resolve them as being separate? Make appropriate
estimates as needed.

Q2S.9 Under ideal conditions and when Mars is closest,
estimate the linear separation of two objects on
Mars that can barely be resolved (a) by the naked
eye and (b) the Hubble telescope (whose main mir-
ror is 1 m in diameter).

Q2S.10 Let's guess that a person can distinguish between
letters of the alphabet, if he or she can resolve fea-
tures of the letter roughly one-fourth the size of the
letter. Let's assume that in bright light, a person's
pupil is «3 mm in diameter, and that the eye
is most sensitive to light with a wavelength of
550 nm. What is the approximate maximum dis-
tance that one could read letters that are 3 mm
high? The letters in headings (TWO-MINUTE
PROBLEMS, HOMEWORK PROBLEMS; exercise
numbers, etc.) in this text are about this height:
check your calculation by direct observation and
report the results.
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Q2S.11 The paintings of Georges Seurat consist of closely
spaced small dots (^ 2 mm wide) of pure pigment.
The illusion of blended colors occurs at least partly
because the pupils of the observer's eyes diffract
light entering them. Estimate the appropriate dis-
tance from which to view such a painting, consider-
ing the fact that art museums are usually very
well lit. (Adapted from Serway, Physics, 3d ed.,
Saunders, Philadelphia, 1990, p. 1096.)

Q2S.12 In J. R. R. Tolkien's The Lord of the Rings (volume 2,
p. 32), Legolas the Elf claims to be able to accurately
count horsemen and discern their hair color (yel-
low) 5 leagues away on a bright, sunny day. Make
appropriate estimates and argue that Legolas must
have very strange-looking eyes, have some means
of nonvisual perception, or have made a lucky
guess. (1 league ~ 3.0 mi.)

Rich-Context

Q2R.1 You are at sea on a foggy night. You are trying to
find out how far you are from the shore, but the fog
is too thick to see anything. After a certain time
of aimless sailing, you dimly hear two separate
foghorns on your port (left) side, perpendicular to
your direction of travel. Each foghorn emits one
short blast of sound at a pitch of 120 Hz every
2.00 s exactly, and each sounds about as loud as the
other. Looking at your map, you see two foghorn
locations marked plausibly near what you guess
your location to be, and on the map the foghorns
are 1700 m apart, flanking the entrance to a harbor.
At a certain time, you notice that you hear the
blasts from the foghorns simultaneously. After you
have sailed at a steady heading for 22 min at a
speed of 8.8 km/h (as measured by your boat's
speedometer), you hear the foghorns exactly out of
phase (one honks, then the other, then the first,
etc.). Roughly how far are you from the foghorns
now? (Hint: Treat this as a two-slit interference
problem.)

Q2R.2 You are the prosecuting attorney in a case. You are
eliciting testimony from your star witness, who has
said that he was sitting on his porch 600 ft away from
the crime scene when he saw the defendant commit
the crime in broad daylight. You ask, "How did you
know that it was the defendant?" Reply: "I recog-
nized the Angels baseball cap the defendant often
wears, the same cap the defendant is wearing now."
Question: "How did you know that it was this An-
gels cap and not an ordinary cap of the same color?"
Reply: "I could see the big A very clearly." Question:
"You are absolutely sure of this?" Reply: "Yes, ab-
solutely." With sudden shock, you realize that your
star witness is lying. How do you know this?

Q2R.3 The phenomenon of refraction arises because light
travels at different speeds in different media. The

speed of light in a vacuum is c = 299,792,458 m/s
(by definition of the meter). Light moves about
0.03 percent slower than this in air, 25 percent
slower in water, 34 percent to 40 percent slower in
glass, and so on. Physicists typically express the
speed of light in a certain medium in terms of the
medium's index of refraction, which we define to be

(Q2.16)

where c is the speed of light in a vacuum and vm is
its speed in the medium. The index of refraction for
air is 1.0003, water is 1.333, glass is 1.5 to 1.6, and so
on. (Note that «,„ is not necessarily an integer and is
always > 1.)

Figure Q2.15 shows plane waves of light cross-
ing the boundary between two transparent media.
Let us say that the speed of light in the upper
medium is Vi but V2 < v\n the lower medium. The
plane waves approach the boundary in such a way
that their direction of travel makes an angle of Q\h the respect to a line perpendicular to the

boundary between the surfaces. Let us focus our at-
tention on a certain wave crest that at t = 0 is just
hitting the boundary at point A. The wave crest at
point B will hit the boundary at point C a certain
time Af later such that v\f is equal to the distance
between points B and C. In the meantime, the
Huygens wavelet from point A will have moved
outward a distance of V2 At in the lower medium.
The wave front must therefore go through point C
and be tangent to the wavelet from point A. You can
see from the diagram that this wave front after time
Af has been twisted somewhat from its original
direction: the wave front's direction of motion now
makes a smaller angle 62 with respect to the direc-
tion perpendicular to the boundary. Refraction is
this bending of the direction of the motion of the
light wave as it moves across the boundary.

Wave crest
atf = 0

Figure Q2.15
A wave crest being refracted as it
moves from a medium where its
speed is v-\o one where its speed
is V2- The arrows indicate the
crest's direction of motion.


