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Section Q1.1: Introduction to the Unit
This unit is focused on quantum mechanics, the revolutionary theory of microscopic
systems that lies at the foundation of most of 20th-century physics. This theory grew
out of the observation that in certain circumstances, matter behaves like waves. Each of
the unit subdivisions shown in the menu to the left explores a crucial aspect of this
great idea. See the section for a more detailed description of each of the five subunits.

Section Q1.2: Tension and Sound Waves
In this chapter, we will focus primarily on one-dimensional waves that we can de-
scribe with a disturbance function f ( x , t) of position and time alone. Tension waves
on a stretched string and sound waves in a tube are common and accessible examples
of one-dimensional classical waves. A sound wave involves disturbances of the pres-
sure and density of a gas away from the ambient atmospheric pressure and density.

Section Q1.3: The Superposition Principle
The superposition principle for waves states that

If two traveling waves are moving through a given medium, the disturbance
function f(x, t) for the combined wave at any time t and any position x is
simply the algebraic sum of the functions f\(x, t) and /2(x, t) that describe
the individual waves: f ( x , t) = fa(x, t) + f2(x, t).

This is not always strictly true, but for almost all small-amplitude mechanical waves,
it is an excellent approximation.

Section Q1.4: Reflection
When a medium's characteristics change significantly and suddenly at a certain
boundary, waves will at least be partially reflected by that boundary. Waves are com-
pletely reflected at boundaries where their disturbance values are either fixed (for ex-
ample, a string whose end is attached to a fixed point) or free (for example, a string
whose end is allowed to move freely up and down). The wave reflected from a fixed
boundary is inverted, but the wave reflected from a free end is upright. For sound
waves in a tube, an opening in the tube acts as a fixed end on a string (because the air
pressure at the opening is constrained to be the same as atmospheric pressure), while
a closed end acts as the free end of a string does.

Section Q1.5: Standing Waves
Sinusoidal waves reflected from a boundary will interfere with incoming waves in
such a way as to create a standing wave described by the disturbance function

f ( x , t) = 2A sinfctcoswf (Q1.9)

Such a wave does not move, but amounts to a fixed sinusoidal disturbance sin/ex
whose overall amplitude oscillates with time. The disturbance is always zero at points
where sin kx = 0; we call such points nodes of the standing wave. The disturbance
oscillates maximally at positions where sinkx = ±1; we call such points antinodes of
the standing wave.



When a standing wave is trapped between two fixed boundaries a distance L
apart, only waves having certain frequencies will match the specified boundary con-
ditions. For example, standing waves on a string with two fixed ends must go to zero
at both boundaries, so L must correspond to an integer number of half wavelengths,
and the constraint on the wavelength constrains the standing wave's frequency as
well. In general, the frequencies are such that

/ = —- n where n = 1,2,3,...

f = —— n -where n = 1,3,5,...

i when the boundaries are analogous \o either two free or two fixed ends I

/ when the boundaries are analogous \o one fixed and one free end )

(Q1.12&)

Purpose: These equations describe the frequencies / of the fundamental
modes of standing waves in a medium between two reflecting boundaries.

Symbols: L is the distance between the boundaries, v is the speed of trav-
eling waves in the medium, and n is a positive integer (a positive odd integer in
the second case).

Limitations: This equation applies only when the medium is uniform and
the waves are essentially one-dimensional. The boundaries must be perfectly
reflecting if the wave is to sustain itself.

We call the allowed standing waves in such a system the system's normal modes (of
oscillation). We call the n = 1 normal mode the system's fundamental mode and its
frequency the system's fundamental frequency. We call modes where n > 1 the
harmonics of the fundamental mode.

Section Q.1.6: The Fourier Theorem
The Fourier theorem implies that we can think of any disturbance as being a sum of
sinusoidal disturbances, and in particular, a disturbance in a medium between re-
flecting boundaries can be written as a superposition of waves corresponding to the
system's normal modes. The section illustrates this in the case of a square wave
(whose disturbance value is + A for one-half of the distance between the boundaries
and —A for the other half).

Section Q1.7: Resonance
A disturbance of a medium between two boundaries most effectively transfers energy
to that system if the frequency of the disturbance most closely matches one of the sys-
tem's normal-mode frequencies. For example, a violin bow sliding on a string dis-
turbs the string in complicated random ways, which the Fourier theorem teaches us
we can think of as being a superposition of sinusoidal waves with many frequencies.
Those frequencies that match the string's normal-mode frequencies will transfer en-
ergy to the string, causing the string to vibrate in a mixture of normal-mode frequen-
cies that we hear as a fundamental tone "colored" by higher harmonics.
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The structure of unit Q.

Ql .1 Introduction to the Unit

Perhaps the most important revolution in 20th-century physics resulted from
the discovery that newtonian mechanics was unable to adequately describe
the behavior of systems of particles roughly the size of atoms and smaller.
The behavior of such systems is better described by the theory of quantum-
mechanics, which first began to take its modern shape in the late 1920s after
decades of work by many physicists. Quantum mechanics is the foundation
on which virtually all modern physics and chemistry rest.

Quantum mechanics is based on the idea that under certain conditions,
objects (even those considered to be point particles, such as electrons) exhibit
wavelike behavior: this strange thought is the "great idea" of this unit. The
wavelike aspect of matter has a variety of surprising implications. For exam-
ple, one implication is that the energy of a bound system of particles (such as
an atom) must be quantized (that is, its energy can have only certain discrete
and distinct values). This provides the key for understanding atomic spectra
and certain details of molecular, atomic, and nuclear structure that have no
newtonian explanation.

The world seen through the eyes of quantum mechanics is a very strange
one, where a "particle" seems to follow more than one path in getting from
point A to point B and interferes with itself, where the best predictions we
can make are statistical, and where the simple act of observing a system ir-
revocably changes its physical state. Indeed, quantum mechanics is so
strange that almost no one thinks that physicists completely understand it
yet. Even so, it has proved to be indispensable in modern physics.

The goals of this unit are to provide a limited introduction to the theory
of quantum mechanics, specifically tracing how the wavelike aspect of mat-
ter is linked to the phenomenon of energy quantization and its consequences
for the structure of the atomic nucleus. The unit has five major subdivisions,
as shown in Figure Ql.l:

1. Classical waves (chapters Ql and Q2). The theory of quantum mechanics
is based on making an analogy between the wavelike aspects of matter
and "classical" waves that we can more directly view in nature (such as
water and sound waves). This subdivision provides foundations for un-
derstanding the analogy by discussing the behavior of classical waves
and the similar behavior of electromagnetic (light) waves.

2. Particles or waves (chapters Q3 and Q4). Once we have come to under-
stand how classical waves behave, we can explore more fully how both
light and matter behave in ways that are both wavelike and particlelike.
This subdivision lays the foundation for a quantum theory that embraces
the wavelike nature of matter.

3. Basic quantum physics (chapters Q5 through Q9). In this subdivision, we
will explore the basic structure of quantum mechanics, focusing on why
the wavelike behavior of matter implies that the energy of a bound sys-
tem must be quantized and exploring the implications of this idea for
atomic and molecular spectra.

These subdivisions comprise the unit's core. The remaining subdivisions
are independent of each other and explore extensions and applications of
this core.

4. The Schrodinger equation (chapters Q10 and Qll) extends the ideas pre-
sented in the core chapters to create a more sophisticated model of the
quantum behavior of bound systems. This subunit closes with a discus-
sion of the phenomena of tunneling and the covalent bond.
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5. Nuclear physics (chapters Q12 through Q15). This subunit focuses on how
the ideas presented in the core chapters illuminate the structure and be-
havior of atomic nuclei. Studying nuclei will also give us a chance to re-
view and apply some results from units R and E and an opportunity to
discuss radioactivity and nuclear power, which have important techno-
logical applications and societal implications.

Q1.2 Tension and Sound Waves

A classical wave, you will recall from unit E, is fundamentally a disturbance
that moves through a medium that remains basically at rest. The most common
examples of classical waves are water waves that disturb the surface of a body
of water, tension waves that move along a stretched string or spring, and sound
waves that move through fluids and/or solid objects.

In this chapter, we will focus our attention on waves that move in one di-
mension (which we take to be the x axis) and that we can accurately describe
by some function f ( x , t) that expresses the disturbance caused by the wave
as a function of position x along the x axis and time t (note that this function
essentially ignores the shape of the wave in the y and z directions).

A tension wave on a stretched string is an excellent example of such a
one-dimensional wave. In this case, the function f ( x , t) describes the trans-
verse displacement from its equilibrium position (which we assume to lie
along the x axis) at position x and time t (see figure Q1.2a). Such a wave can
clearly travel only along the string (and thus the ±x direction), so a simple
function of x and t completely describes such a wave.

A sound wave in the air inside a narrow cylindrical tube is another
example of a one-dimensional wave. A sound wave is a fluctuation in the
density of the medium, so in this case, the function f ( x , t) describes the den-
sity of the air above or below its equilibrium value (see figure Q1.2b).+ Since

Review of basic wave concepts

Sound waves

String

Equilibrium
position

(a)
Transverse

displacement

(b) Tube Air

(c)

Figure Q1.2
(a) A transverse wave on a string, (b) A sound
wave in a tube, (c) The mathematical
function describing either of the two waves.

^Alternatively, one can describe a sound wave in terms of the extent to which air molecules are
displaced from their rest position by the passing wave. While this displacement representation
has a few advantages, I think that the density/pressure representation is more intuitive in gen-
eral. Rather than confuse the issues by discussing both representations, I will use the density/
pressure representation exclusively.
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the pressure of a gas depends strongly on its density, we can also think of a
sound wave in a tube as causing a variation in the air pressure in the tube.
If the tube is fairly narrow, the variation in the density across the tube's
width is negligible, and the wave is adequately described by a function of x
and t alone.

Statement of the superposition
principle

This implies that waves travel
through each other

Q1.3 The Superposition Principle

The thing that most sharply distinguishes how waves behave from how par-
ticles behave (and thus the aspect of wave behavior that is most crucial in this
unit) is how passing waves interfere with each other as they overlap. Our fun-
damental model for understanding this interference is the superposition
principle for waves, which states that

If two traveling waves are moving through a given medium, the
function f ( x , t) that describes the combined wave at any time i
and any position x is simply the algebraic sum of the functions
f i ( x , t ) and /2(x,t) that describe the individual waves: f ( x , t ) =

) + f2(x,t).

The superposition principle for waves is a theoretical assertion about how in-
terfering waves behave. We find experimentally, however, that most of the
waves encountered in nature obey this principle. Waves that do obey this
principle are called linear waves, and those that don't are called nonlinear
waves. In a given medium, waves that represent small disturbances typically
obey the superposition principle. For example, the gentle sound waves gen-
erated by conversation (or even loud music) obey the superposition principle
to a high degree of accuracy, but shock waves (produced by an explosion or
a jet moving at supersonic speeds) noticeably do not. In this text, we will
study only linear waves.

The superposition of two traveling waves is illustrated in figure Q1.3. In
this diagram, a traveling pulse wave moving in the +x direction meets a
weaker pulse wave traveling in the opposite direction. The figure shows the
pulses' motions using a series of "snapshots" arranged vertically, like a
spacetime diagram, with time increasing upward. Each graph's vertical axis
represents the degree to which the medium is disturbed from its normal
value. In the case of a tension wave on a string, this axis would correspond to
the string's transverse displacement; in the case of a sound wave, it would
correspond to the air pressure in the wave compared to normal air pressure,
and so on. Figure Ql.Sa shows the case where the disturbance in both cases
is positive. Figure Q1.3b shows the case where one of the disturbances is neg-
ative (that is, in the wave, the quantity represented by the vertical axis is less
than the normal value of that quantity in the medium). In each case and at all
times, we find the function representing the combined wave by simply
adding the functions representing the two pulses.

An important implication of the superposition principle, as illustrated in
figure Q1.3, is that linear traveling waves can pass through each other with-
out modification. For example, two pebbles dropped in a pond produce rings
of ripples that pass through each other without affecting each other. Simi-
larly, two widely separated people calling to each other can hear and inter-
pret the details of each other's calls even though the two sets of sound waves
may cross in transit.
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(a)

Figure Q1.3
Illustration of the superposition principle for traveling pulse waves. Read this diagram from
the bottom up. Note that in (b), where the waves have opposite signs, the disturbance when
the waves cross is smaller than the absolute magnitude of either wave.

Exercise Q1X.1

Two transverse wave pulses, A and B on the diagram below, are moving
with the same constant speed of 10 cm/s but in opposite directions along a
stretched string. The graph shows the shape of the function describing the
two waves at t = 0. On the same graph, sketch the function describing the
combined wave at t = 2 s and t = 3 s.
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Q1.4 Reflection

When a traveling wave encounters a boundary, part of or all the wave will be
reflected at that boundary. A boundary in this context is somewhere where
the medium's characteristics suddenly change. A wave on a string encoun-
ters a boundary if the mass density of the string changes at a point. A sound
wave moving through a tube encounters a boundary if the tube suddenly
widens or narrows. A light wave moving through transparent glass is re-
flected at both the front and back surfaces of the glass, because glass has dif-
ferent characteristics than air as a medium for light waves.

Extreme cases of boundaries
between media
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Fixed

(a)

Frictionless ring -

Figure Q1.4
A pulse wave encountering (a) a
fixed end and (b) a free end. (In
the latter case, the ring and rod
ensure that the string's
displacement at the free end is
entirely transverse.)

A model for understanding
reflection

We can understand this phenomenon better if we consider two extreme
cases. Imagine a traveling wave on a stretched string, and let one end of the
string \>e fixed, so that it cannot displace at all in response to the wave. (You can
think of this situation as being the extreme case of one string being connected
to a second string of infinite mass density.) The wave cannot move beyond the
fixed point, but its energy must go somewhere. The only way that the wave's
energy can be conserved is if the boundary entirely reflects the wave.

The opposite extreme is seen when one end of the string is completely free
(this is the extreme case of one string being connected to a second string with
zero mass density). Since again the wave cannot move at all beyond this
boundary, its energy will be conserved only if the boundary entirely reflects it.

Figure Q1.4 illustrates fixed and free boundaries for a string.
Even though the wave is completely reflected at both the fixed and free

boundaries, the wave reflected from a fixed end is opposite in sign to that of
the initial wave, whereas the wave reflected from a free end has the same sign
(see figure Q1.5). Why?

We can use the following model to understand this. Pretend that the
string does not end at the boundary point XB, but rather continues past that
point. Let us imagine that as our original pulse wave moves toward XB, we
create another pulse wave the same distance from XB on the other side whose
shape is the mirror image of the first wave, whose sign is opposite, and which
moves toward XB at the same speed. Since these waves always have equal
magnitudes but opposite signs at XB, they will exactly cancel each other
there, keeping the string at XB fixed at all times as they move past each other.

Now the string to the left of XB cannot tell whether the string is motion-
less at XB because it is fixed there or because another upside-down mirror-
image wave happens to be coming in from the right. Therefore, it must
behave in the same way in either case. Since in our imaginary case the
upside-down mirror image wave will continue to move toward the left, this
must be what happens in the fixed-end situation also. Therefore, we see that
the fixed end must reflect an upside-down, mirror-image version of the wave
that hits it (see figure Ql.Sa).

(a)
Figure Q1.5
A model for understanding reflection of pulse waves on a string. We imagine the string to
continue beyond the boundary (the imaginary part is in color here) and that the pulse is met
at the boundary by a mirror-image pulse. Dotted lines show the individual pulse waves;
solid lines show their sum. Read the diagram from the bottom up.
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We can use the same model to help us understand reflection from a free
end. Here, the trick is to understand that the string's slope as we approach the
free end must go to zero. Why? Let the tension on the string be FT and its
mass per unit length be some constant ̂ . Consider a tiny hunk of string of
length dx at the end of the string: the mass of this hunk will be m — /u. dx.
The transverse (vertical) component of the force exerted by the rest of the
string on this part of the string will be — FT sin. 9, which is approximately
-Frtan$ = FT- (slope of the string) if 0 is small (see figure Q1.6). As
dx ->• 0, m -> 0, so this transverse force must also go to zero so that the
hunk's acceleration does not grow to infinity in this limit. Thus, the slope at
the end of the string must go to zero as dx gets small.

Now pretend that the string continues past the boundary, and imagine
that as our original pulse moves toward the boundary point, a mirror-image
upright pulse also moves toward the boundary point from the other side.
Since the slopes of the original pulse and its mirror-image are always equal
in magnitude and opposite in sign at XB, the combined wave's slope will al-
ways add to zero at XB, just as if the end were free. Since the left part of the
string cannot tell whether the end is really free or just behaving as if it were
free because of a pulse coming in from the right, it will behave the same way
in either case. Thus the free end must reflect an upright mirror image of any
wave that encounters it (figure Q1.5b).

If the boundary is intermediate between these extremes (a connection
between a thin and thick string, for example), a wave will be partially trans-
mitted and partially reflected (see figure Q1.7). The reflected part of the wave
is upside down if the medium beyond the boundary is more like a fixed point
(a denser string, for example), and right side up if it is more like a free end (a
less dense string, for example).

The open end of a cylindrical tube is to a sound wave what a fixed end is
to a wave on a string (contrary to what one might intuitively expect!). This is
so because while the air pressure can vary dramatically when the air is
trapped in the tube (and thus cannot escape regions of high pressure easily),
air under even a small amount of pressure near an open end can just expand
into the surrounding atmosphere, dissipating that pressure. Therefore the air
pressure is essentially fixed at the value of atmospheric pressure at the tube's
open end.

On the other hand, the air's density and pressure can vary freely at a
closed end of the tube (indeed, the pressure can become quite high as air is
crammed against the closed end by a wave). A closed end to a tube is thus to
a sound wave inside the tube what a free end is to a wave on a string. This is
illustrated in figure Q1.8. (Make sure that you remember this analogy!)

Exercise Q1X.2

A ripple on the surface of water in a tub will reflect off the solid wall of the
tub. Will the reflected wave be an upright or inverted version of the original
wave?

Q1.5 Standing Waves

Up to this point, we have been considering mostly pulselike traveling waves
(because the ideas of superposition and reflection are easier to think about
and illustrate in the case of pulse waves). However, many naturally occur-
ring waves are similar to sinusoidal waves.

String

End hunk of string

Figure Q1.6
Close-up of the free end
of a string.

Time

Thick string

Thin string

Figure Q1.7
When a wave on a string
passes a boundary where the
string's thickness changes, part
of the wave is reflected and
part is transmitted. (Read this
diagram from the bottom up.)

Air

(a)
Tube

Fixed

(b) U String

Figured .8
The closed and open ends of a
tube are to a sound wave inside
like the free and fixed ends of a
string are to a wave on the
string.
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A review of the characteristics
of sinusoidal waves

In unit E, we saw that we can describe a one-dimensional sinusoidal
traveling wave by the mathematical function

f(x, t) = A sin(kx - cot) (Ql.l)

where A is the amplitude of the wave and k and a> (which we call the wave's
wavenumber and angular frequency, respectively) are constants related to the
wave's wavelength A. and period T by the expressions

27T

T
(Q1.2)

A wave described by equation Ql.l is a traveling sinusoidal wave. We can
see this by focusing on a given crest of the wave, say, the one where the phase
value in the parentheses is n/2. This crest's location at all times is given by

n
— — cot

7T CO

= 2k+kt
(Q1.3)

Taking the time derivative of this equation, we find that the crest's ̂ -velocity is

(Q1.4)vx =
dt

CO CO
= 0 + - = +-

k k

So we see that the wave moves in the +x direction with speed co/k.
Using the same kind of approach, you should be able to show that

f(x, t) = A sm(kx + cot) (Q1.5)

describes a sinusoidal wave that moves in the — x direction with speed co/k.

A standing wave

Exercise Q1X.3

Verify this last claim.

Exercise Q1X.4

Show that the speed of the wave described by either equation Ql.l or equa-
tion Q1.5 can also be written (where / = l/T is the wave's frequency).

o='£=V (Ql-6)

Now imagine that we have a string whose left end (at x = 0) is fixed.
Imagine then that we start a sinusoidal wave moving leftward toward this
fixed point. When the wave reaches this fixed point, it will reflect off the fixed
end, creating an inverted sinusoidal wave moving to the right. In the region
where the left- and right-going waves overlap, the total wave function (ac-
cording to the superposition principle) is

f(x, t) = A sm(kx + cot) + A sm(kx - cot) (Q1.7)

The first term on the right represents the original left-going wave, while the
second term represents the inverted reflected wave. The latter does represent
an inverted wave, even though its sign in the formula is positive: note that at the
boundary point x = 0, the second term becomes A sin(—cot) = —A sin(+o>t)/
so it exactly cancels the first term at all times, keeping /(O, t) = 0 (consistent
with the fact that this point is fixed).
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Now there is a trigonometric identity

sin( A ±B) = sin .Acos B ± cos Asin B (Q1.8)

Using this identity, you can show that we can rewrite equation Q1.7 as
follows:

f ( x , t) — TiA sinkxcoscot (Q1.9)

Exercise Q1X.5

Verify equation Q1.9.

Note that this is not the equation of a traveling wave: rather this is the
equation of a stationary sinusoidal wave f(x) = sinkx multiplied by a factor
2Acoscat that oscillates with time (see figure Q1.9). We call such a wave a
standing wave.

Note that the string's displacement function f ( x , t) is zero at all times
wherever sinkx = 0. We call these positions of zero movement nodes. On the
other hand, points where sin kx = ±1 oscillate up and down with a larger am-
plitude than any other points on the string: we call these positions antinodes.

If both ends of the string are fixed a distance L apart, sinusoidal waves can
bounce back and forth between those ends, creating a self-sustaining stand-
ing wave (figure Q1.10 displays such a standing wave on an actual vibrating
string). The requirement that the string be fixed at both ends, however, implies
that the standing waves can have only certain special wavelengths: since

has to be zero at x = L as well as x = 0, we must have

kL = mt

where n is some (nonzero) integer. As illustrated in figure Ql.ll, this essen-
tially means a sinusoidal standing wave on this string has to fit exactly n half-
wavelengths between the two fixed endpoints. The frequency of oscillation/
of such a standing wave is given by

(Ql.lla)

Standing waves on a string
with boundaries at both ends

-
r

t = T/8 f = T/4 f = 3T/8 t = T/2

Figure Q1.9
How left-going and right-going sinusoidal waves combine to form a standing wave. Black dots correspond to nodes,
white dots to antinodes.
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Figure Q1.10
A photograph of standing waves on a vibrating string.

Figure Q1.11
Normal modes of oscillation of a
string fixed at both ends. Note
that n corresponds to the number
of half-wavelengths of the wave
that fits between the fixed points.

n = 1

n = 2

x n = 3<

x n = 4<

where v is the velocity of waves on the string. Note that the frequency/of any
viable standing wave on this string will be an integer multiple of the funda-
mental frequency v/2L, which happens to be the number of times a wave
can move down the string and back (a distance of 2L) per second.

We call the standing wave corresponding to each value of n here a nor-
mal mode of the string's oscillation. The wave corresponding to n = I we call
the string's fundamental mode, and its other modes are the harmonics of the
fundamental mode.

Exercise Q1X.6

Use equations Q1.2, Q1.4, and Q1.10 to fill in the missing steps leading to the
last equality in equation Ql.lla.

If the left end of the string is fixed while the other end is free, we can still
set up standing waves on this string, but the characteristics of the standing
wave are somewhat different. Equations Q1.7 and Q1.9 still apply, but the
condition that has to be satisfied at x = L is not that sin kx = 0 but rather that
the slope of sinkx must be equal to zero. The slope of sinkx is zero at the max-
ima and minima of the sine function, which occur where kx = n/2,
3n/2,5n/2, and so on. Therefore for a string with one fixed end and one free
end (or for air in a tube with one open end and one closed end), we have

and n is an odd integer

(Ql.llb)

We see that the frequency of the normal-mode oscillations in this case is still
an integer multiple of the fundamental frequency P/4L, but the fundamental
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frequency is one-half that of a string fixed at both ends, and only odd multi-
ples of this frequency correspond to viable normal modes. Figure Q1.12
illustrates some of these modes.

So, in summary,

where n = 1,2,3,...

/ when the boundaries are analogous \„ „ ,
y to either two free or two fixed ends )

f = —n where n = 1,3,5,...

(when the boundaries are analogous\^ „,,
to one fixed and one free end J

Purpose: These equations describe the frequencies / of the funda-
mental modes of standing waves in a medium between two reflecting
boundaries.

Symbols: L is the distance between the boundaries, v is the speed
of traveling waves in the medium, and n is a positive integer (a positive
odd integer in the second case).

Limitations: This equation applies only when the medium is uni-
form and the waves are essentially one-dimensional. The boundaries
must be perfectly reflecting if the wave is to sustain itself.

n = 3

Figure Q1.12
The first two standing wave
modes for a string with one
end fixed and one end free.
Note that in this case, an odd
number of quarter-
wavelengths must fit between
the boundaries.

Q1.6 The Fourier Theorem

In section Q1.5, we saw that traveling sinusoidal waves on a string can set up
standing waves between the string's ends, if they have the right wavelength
and frequency. What if the shape of the initial disturbance on the string is not
sinusoidal?

During the decade of the 1820s, Jean Baptiste Joseph Fourier showed that
one can construct any periodic and reasonably continuous wave function
f ( x , t) by superposing a sufficiently large number of sinusoidal waves with
appropriately chosen amplitudes and frequencies. In particular, he showed
that one can consider any waveform of a vibrating string to be a superposi-
tion of appropriately weighted sinusoidal waves corresponding to the normal
modes of the string.

For example, imagine that we have a string fixed at both ends whose
shape at time t = 0 is what one might call a square wave

+A
-A

i f O < x < I T
2L

ii\<x<L
(Q1.13)

It turns out that this wave is equivalent to the following infinite sum of sinu-
soidal waves (see figure Q1.13):

f ( x ) = A- (sinkx + - sin3kx + - sin5kx + • • • ) (Q1.14)
TT \ 5 /

where fc = n/L is the wavenumber of the fundamental mode. Note that this
sum involves only sinusoidal waves whose wavenumbers correspond to
normal modes of a string fixed at both ends (see equation Q1.9). Each of these

Statement of the Fourier
theorem
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Figure Q1.13
This figure illustrates how we can
construct a square wave from
sinusoidal waves. The top graph
shows the square wave and the
sinusoidal waves corresponding
to the first three terms of
equation Q1.14. The bottom
graph shows that the sum of just
these three terms is a
recognizable approximation to
the square wave. The
approximation gets better as
more terms are added.

-2- sin (3fct)
3-77-

-1.0--

Square wave

1.0

-1.0--

Sum of three sinusoidal
waves shown above

Understanding sinusoidal
waves is the key to
understanding all waves

normal-mode standing waves, in turn, can be considered to be a sum of si-
nusoidal traveling waves (see equations Q1.6 and Q1.8).

One implication of this theorem is that if we deeply understand the be-
havior of sinusoidal waves, we effectively understand the behavior of any
kind of wave, since we can consider any wave to be a sum of sine waves. This
theorem is perhaps the single most important principle of wave behavior. While its
mathematical proof is beyond our means at present, you may well see it
proved several times in different ways if you take higher-level physics or
math classes (an indication of its importance). In our present context, this
theorem implies that no matter what the shape of the initial disturbance of
the string might be, we can think of its subsequent oscillation as being a com-
bination of normal-mode oscillations.

The system responds most
strongly to disturbances at
normal-mode frequencies

Q1.7 Resonance

Imagine that we disturb a string by wiggling it at a frequency different from
one of its normal-mode frequencies. We will find that sometimes a given
wiggle happens to be timed correctly to give the string some energy, but just
as often the string is moving in such a way as to push back as we attempt to
wiggle it, transferring energy back to us. The result is that on the average, our
wiggling transfers very little energy to the string, even if we wiggle it vio-
lently. On the other hand, if we wiggle the string at one of its normal-mode
frequencies, then we can time it so that when we tug on the string, the string
is moving in just the right way to accept energy from the push. As a result,
the string picks up more and more energy from our efforts, increasing its os-
cillation amplitude (until drag and other effects dissipate energy at the same
rate as we supply it).

By way of analogy, imagine that you give a child on a swing a series of
pushes at a rate of, say, two pushes per second. Pushes this frequent are not
going to effectively get the child moving. Sometimes the child is moving for-
ward as you push forward, and so you transfer energy to the child. Just as
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often, though, the child is moving backward, so your push actually extracts
energy from the child's motion. Except for frustrating the child, your efforts
do very little on the average.

On the other hand, if you synchronize your pushes with the natural
motion of the swing (delivering them with a frequency of more like once
every 2 s), you are always pushing on the swing when it moves forward, and
therefore you always transfer energy to the swing instead of the reverse. Each
successive oscillation, therefore, the swing will gain more energy from your
push, and (to the child's delight) the amplitude of oscillation increases.
This tendency to react strongly to disturbances at normal-mode frequen-

cies but ignore disturbances at other frequencies is a general feature of oscil-
lating systems: we call this phenomenon resonance.

The concepts of resonance and the Fourier theorem help us understand
how many kinds of musical instruments work. For example, a bow sliding
across a violin string disturbs the string in a complicated, random fashion.
The Fourier theorem teaches us that we can think of this random disturbance
as being a superposition of many sinusoidal disturbances having a wide
range of frequencies and amplitudes. Some of these frequencies closely match
the normal-mode frequencies of the violin string: the string thus extracts en-
ergy from the bow at these frequencies and begins to vibrate. The resulting
wave on the string is a complex superposition of normal-mode oscillations at
the string's fundamental frequency and integer multiples of that frequency.
Our ears and brains process the complicated sound produced by the vibrat-
ing string as a musical tone at the fundamental frequency "colored" by the
harmonics, which give it the distinctive sound that makes us think "violin."

Many musical instruments use columns of air in tubes instead of strings
as the resonating system that creates the sound. When you blow across the
top of a bottle, for example, you are randomly disturbing the air trapped in
the bottle, and some of the energy in the hiss of the air goes to exciting nor-
mal modes of the air in the bottle, creating a tone.

Organ pipes work in a similar manner: a stream of air blowing against a
sharp edge creates vortices that disturb the air in the pipe in a complex way.
An organ pipe that is open at both ends (see figure Q1.14a) is analogous to
a string fixed at both ends, and so the sound generated by the pipe consists
of a tone at the fundamental frequency of the air in the pipe plus contribu-
tions from all higher harmonics. This gives the pipe a rich sound that is much
like that of a violin.

Other kinds of organ pipes are closed at one end (see figure Q1.14b),
which is analogous to a string that is free at one end (see figure Q1.8). Not
only does this give the pipe a fundamental frequency that is one-half that of a
doubly open pipe of equivalent length, but also the air in a closed pipe can
only vibrate at the odd harmonics of its fundamental tone (see equation
Q1.12&). This absence of even harmonics gives the sound produced by such
pipes a very distinctive "flutey" tone color.

Finally, the phenomenon of resonance helps explain why light, small
wooden buildings generally do very well in an earthquake, while nearby
buildings that are six stories tall (and certain multiples of six stories) can be
severely damaged. A six-story building constructed using ordinary tech-
niques happens to have a fundamental natural frequency of oscillation that
is close to that of a certain type of earthquake wave, so these buildings effec-
tively absorb energy and oscillate wildly in response to an earthquake. The
same waves can effectively transfer energy to higher-frequency normal
modes in a building whose height is an appropriate multiple of six stories.
Small, wooden-frame buildings, on the other hand, have a much higher

Musical instruments

Resonances during
earthquakes
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Figure Q1.14
(a) A photograph showing organ
pipes that are open at both ends.
(b) A photograph showing organ
pipes that are closed at one end.
(The handle at the end of each
allows a tuner to adjust the length
of the air column in the pipe.)

fundamental frequency of oscillation and so do not effectively absorb energy
from an earthquake.

We will see in chapters Q7 and Q8 that resonance helps us understand
the peculiar behavior of bound quantum systems.

Example Q1.1

Problem The air column in a certain organ pipe open at both ends has a
fundamental frequency of 260 Hz (this corresponds to middle C). How long
must such a pipe be?

Model The air column in an organ pipe open at both ends is analogous to a
string fixed at both ends. According to equation Q1.10, the fundamental fre-
quency of such a system is given by

/ = ̂  (Ql-15)

where in this case L is the length of the air column (which is the length of the
pipe) and v is the speed of a wave moving in this column (which is the speed
of sound, or 343 m/s at normal temperature and pressure).
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Solution Therefore, the required length of the pipe is

L = — = 0.66 m 2.2ft (Q1.16)

(The pipe will actually be a bit shorter than this: the effective "fixed end" of
the air column is actually a bit outside of the open end.)

TWO-MINUTE PROBLEMS

Q1T.1 A linear traveling wave can be partially reflected
when it encounters another linear traveling wave,
true (T) or false (F)?

Q1T.2 A sound wave traveling in air hits the surface of a
body of water. Is the reflected wave (A) inverted or
(B) upright? (Make a guess). The reflection will be
total, T or F?

Q1T.3 Imagine that we create a traveling compression
wave in a spring that has one end fixed. When the
wave reflects from the fixed end, it will be inverted,
TorF?

Q1T.4 Imagine that you are near one end of a 150-m-long
cylindrical tunnel open to the air on both ends. If
you give a shout, you might hear an echo, T or F?

Q1T.5 If you face a cliff or a large concrete wall and give a
shout, you will hear an echo. Are the sound waves of
the echo inverted or upright compared to the waves
of your original shout?
A. Inverted
B. Upright

Q1T.6 The frequencies of the normal modes of a string
that is free at both ends are the same as those of a
string that is fixed at both ends, T or F?

Q1T.7 A sinusoidal standing sound wave inside a tube
that is open at both ends must fit between the
tube's ends
A. An integer number of wavelengths
B. An integer number of half-wavelengths
C. An odd integer number of quarter-wave-

lengths

Q1T.8 When the frequency of a standing wave on a string is
doubled, its wavelength is multiplied by a factor of
A.

Q1T.9

Q1T.10

Q1T.11

B.
C.
D.
E.
F.
T.

i
4

1/V2
V2
2
4
A is unchanged

The period T of the fundamental mode of the air in
a pipe open at one end and closed at the other is
equal to what multiple or fraction of the time At re-
quired for a sound wave to travel from one end of
the tube to the other?

B.
C.
D.
E.
F.

T = |At
T = At
T = 2Af
T = 4 A f
Other (specify)

A certain organ pipe is open at both ends. Another
pipe of the same length is open at one end and
closed at the other. Which will have the lower pitch?
A. The pipe open at both ends.
B. The pipe closed at one end.
C. Both will have the same pitch.
D. It depends on the pipes' diameters.

A certain stretched string has a fundamental fre-
quency of 165 Hz (E below middle C). If someone
sings a note at a frequency of 495 Hz (B above mid-
dle C), the string will not respond significantly to
the disturbing influence of the sound waves, T or F?

HOMEWORK PROBLEMS

Q1B.1 Consider the triangle-shaped waves shown in the
drawing below. Each wave moves with a speed of
5 cm/s in the direction indicated. Draw separate
graphs showing what the superposition principle x (cm)
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implies that the combined wave should look like at
t = 2 s, 3 s, 4 s, and 6 s.

Q1B.2 Consider the sawtooth-shaped waves shown in the
drawing below. Each wave moves with a speed of
5 cm/s in the direction indicated. Draw separate
graphs showing what the superposition principle
implies that the combined wave should look like at
t = 2 s, 3 s, 4 s, and 6 s.

Q -4-
x (cm)

Q1B.3 Imagine that we have a string 1.2 m long and fixed
at both ends. We adjust the tension on the string
until the speed of waves on the string is 24 m/s.
What is the frequency of the string's fundamental
mode of oscillation?

Q1B.4 An organ pipe open at both ends is 2.2 m long.
What is the frequency of the fundamental mode of
the air in the pipe?

Q1B.5 An organ pipe open at both ends has a fundamen-
tal frequency of 440 Hz (concert A). What is the
length of this pipe? What are the frequencies of its
first three harmonics?

Q1B.6 An organ pipe closed at one end has a fundamental
frequency of 220 Hz (A below middle C). What is
the length of this pipe? What are the frequencies of
its first three harmonics?

Q1B.7 Imagine that we have a string 1.5 m long that is
fixed at both ends. We adjust the string's tension so
that the string's fundamental frequency is 100 Hz.
What is the frequency of the normal mode of the
string's oscillation that has three antinodes?

Q1B.8 Imagine that we have an organ pipe closed at one
end. The length of the pipe is such that the funda-
mental frequency of the air in the pipe is 230 Hz.
What is the frequency of the normal mode of the air
having two internal antinodes (not counting the an-
tinode at the closed end)?

Synthetic

Q1S.1

Q1S.2

When you tune a woodwind instrument, you
pull apart or push together two sections of the
instrument.
(a) Why does this change the instrument's pitch?
(b) How is this related to the purpose of the slide

on a trombone?

Imagine that a string on an acoustic guitar is 25 in.
long between its fixed ends. According to exam-
ple E15.2, the speed of waves on a stretched string

is v = VFr/M- The highest E string on such a guitar
has a pitch of about 329 Hz. Assume that the partic-
ular string used has a mass per unit length of p. =
0.2 g/m.
(a) What tension force must be applied to this

string?
(b) By what fraction would we have to increase the

tension to tune the string up to G (392 Hz)?

Q1S.3 Here is a way to demonstrate the Fourier theorem.
Find a piano and open it so that you can clearly
hear the strings. Press the damper (often the right-
most) pedal: this allows the strings to vibrate freely.
Now sing "uuuuu" loudly but at a definite pitch
for a brief time. You should be able to hear the
strings play the same note back to you. If you touch
various strings with your finger, you may be able to
convince yourself that only the one set of two or
three strings is significantly vibrating, the set clos-
est in natural frequency to the pitch you sang. The
other strings essentially did not respond to your
note, since they did not have the right natural fre-
quency to resonate with it.

Now clap your hands loudly, or slam a book on
the floor, or otherwise make a sudden loud sound
with no definite pitch. What do the piano strings
do? How does what you hear imply that we can
think of the single complicated pulse of your clap
(or whatever), even though it has no discernible
pitch, as the sum of sine waves that do have definite
frequencies?

Q1S 4 A concert flute (see figure Q1.15) is about 2 ft long,
and its lowest pitch is middle C (about 261 Hz).
Should we consider a flute to be a pipe that is open
at both ends or at just one end? (One end of the flute
seems to be clearly closed, so if you choose the for-
mer, you should try to explain where the other open
end is.)

Figure Q1.15
A photograph of a standard concert flute. Does this
represent a tube open at one end or both ends? (See
problem Q1S.4.)
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Q1S.5 You may know that if you inhale helium, your
voice sounds strange and high-pitched if you talk
as you exhale the helium. Why is this? (Hints: Your
sinuses are resonating chambers of air that empha-
size certain of the pitches produced by your vocal
cords. The speed of sound is almost 3 times higher
in helium than in normal air.) Note: Inhaling helium
can be dangerous because while the helium is in
your lungs, your body is not getting the oxygen it
needs to survive.

Q1S.6 Imagine that you have a string that has one end that
is fixed and the other end is perfectly absorbing, so
that traveling waves moving past that end are not
reflected at all. Imagine that we wiggle the string
sinusoidally near the absorbing end (this will send
traveling sinusoidal waves in both directions along
the string). Can we set up standing waves on this
string? If so, at what frequencies (or is there any
limit on the frequency)?

Q1S.7 Consider an organ pipe 34.3 cm long that has one
end open and one end closed. What is the funda-
mental pitch of this pipe? Where are the nodes (rel-
ative to the closed end) of the normal mode of the
air in this pipe whose frequency is 1250 Hz?

Q1S.8 Consider an organ pipe 1.72 m long that has one
end open and one end closed. What is the funda-
mental pitch of this pipe? Where are the nodes (rel-
ative to the closed end) of the normal mode of the
air in this pipe whose frequency is 150 Hz?

Q1S.9 In the equal-temperament tuning system (the most
common system today for tuning musical instru-
ments), each half-step on the musical scale has a fre-
quency that is 21/12 higher than the previous note.
(a) Make a list of the frequencies of the 12 half-steps

(C#, D, D#, E, F, F#, G, G#, A, A#, B, C) above
middle C, given that A is defined to be 440 Hz.

(b) Argue that any note 12 half-steps above another
note will have exactly twice the frequency of
the lower note. (We describe such pitches as
being an octave apart.)

(c) Certain combinations of notes sound "harmonic"
because their frequencies are very nearly simple
integer ratios of each other. As an example, con-
sider a C major chord (C, E, G). What are the sim-
plest ratios that are close to the actual ratios of
the frequencies of E to C and G to C? (In the
equal-temperament tuning system, these ratios
are not quite exact. Other tuning systems make
these ratios more pure in certain keys, but the
equal-temperament system, because of its sym-
metry, has the advantage that no key is favored.)

(d) Sets of notes with simple frequency ratios also
correspond to the harmonic frequencies of a sin-
gle note. If C, E, and G are adjacent harmonics
of some fundamental tone, what is the fre-
quency of that tone?

Q1S.10 The speed of the wave on a flexible string can, if
you think about it, depend on only two quantities:
the tension force FT on the string (-which tells you
how strongly the string is pulled back toward equi-
librium when it is disturbed) and the mass per unit
length fj, of the string (which tells how quickly or
slowly the string responds to that restoring push).
Let us guess that the speed depends on some power
of FT multiplied by some power of p.. Show that if
this is so, the speed v of a wave on the string must
depend on these quantities as follows

(Q1.17)

(where C is an unknown constant with no units),
since this is the only such way to combine these
quantities that yields the correct units. (In chap-
ter E15, we did a much more difficult formal de-
rivation of this wave speed and found that C = 1.)

Q1S.11 The speed of a sound wave in air plausibly depends
on the ambient pressure po of the air (which ex-
presses how strongly a bit of compressed air wants
to return to equilibrium) and the ambient density
Po of the air (which expresses how slowly or
quickly the air responds to pressure changes). As-
suming that the sound velocity is a product of pow-
ers of these quantities, find the only possible such
product that has the correct units. Since standard
air pressure is 1.0 x 105 N/m2, the density of air at
this pressure and 20° C is 1.2 kg/m3, and the speed
of sound has a measured value of 343 m/s under
such circumstances, determine the value of any
unitless constant that might be in your equation.
(Hint: Use dimensional analysis.)

Rich-Context

Q1R.1 You and a companion are trying to escape from
some bad guys one dark night. With the sounds of
pursuit close behind, you come upon an open pipe
that appears to cut through a hillside. If the pipe is
open at the other end, you may be able to escape
this way. If it is closed, you will be trapped. Your
companion says, "I know how to find out," and
sticks his head in, yells something, and then listens.
He then pulls his head out and says, "It must be
open at the other end. When I yelled 'hello,' I heard
the reflection come back 'olleh.' Thus the reflection
was inverted, and since the open end of a pipe is
like the fixed end of a string, it will reflect the sound
inverted." With a thrill of fear, you realize that your
companion is lying to you and thus is possibly in ca-
hoots with the bad guys. How do you know this?

Q1R.2 A bugle (see figure Q1.16) is simply a coiled length
of pipe, without slides or valves. One plays differ-
ent notes on a bugle by buzzing one's lips at differ-
ent frequencies.



20 Chapter Q1 Standing Waves

Figure Q1.16
A photograph of a bugle (see problem Q1 R.2).

(a) How does this change the pitch (frequency) of
the sound the bugle makes?

(b) The bugle can play only certain pitches and not
others (for example, think of the piece "Taps,"
which is entirely constructed of only four dif-
ferent pitches). What are these allowed pitches,
and why are other pitches impossible?

(c) Imagine that certain bugle plays in C, so that the
pitches in "Taps" are low G (196 Hz), middle
C (261 Hz), E (329 Hz), and G (392 Hz), How
long would this bugle be if uncoiled? (Hint: Is
the bugle effectively a tube with two open ends
or a tube with one open end and one closed end?
Think about the implications of either model.
How could you get the pitches listed if the bugle
is open at one end and closed at the other?)

Advanced

QlA.I Here is yet another way to derive equation Ql .17 in
problem Q1S.10: Consider a pulse traveling left

down a string at a constant velocity v. Imagine that
we look at this situation from a reference frame
where the pulse is at rest, and the string is moving
to the right with speed v. This frame will be inertial,
so we can apply Newton's laws. Imagine that we
focus our attention on a little bit of string of length
dL passing the crest of the pulse. We can find a
circle with some radius R that approximates the
curvature of this bit of string (see figure Q1.17).
Argue that the net downward force on this piece of
string is roughly Fnet = FT(dL/R] (ignoring grav-
ity). Since this force is what constrains the bit of
string to follow a circular path of radius R as it
moves over the crest with speed v, this net force
must be equal to mv2/R by Newton's second law,
where m is the mass of the bit of string. Show that
combining these equations implies equation Q1.17,
with C =1. (Hint: Note that if dL is small, then 9 is
small, implying that sin$ ~ #.)

0/2 0/7.

• String

Figure Q1.17
A drawing illustrating how we can treat
a small part of a string mass
undergoing circular motion when the
crest of the pulse wave passes.

ANSWERS TO EXERCISES

QlX.l The total wave function looks as shown below Q1X.3
at time t = 2 s (gray lines) and t = 3 s (colored
lines):

12 -

8 -

70

Q1X.2 The edge of the tub will be analogous to a free end
of a string or the closed end of a tube: the water's
amplitude is not limited, but the wave cannot con-
tinue beyond the boundary. Therefore, the reflected
wave will be upright.

Consider again the crest that corresponds to the ar-
gument of the sine function being n/2:

kxcrest + (ut = -
JT (!)__

,(01.18)

Taking the time derivative of both sides of this
equation, we find that vx = dxaest/dt = —to/k.

Q1X.4 Since a> = 2n/T and k = 2n/L, we have

A
= T

(Q1.19)

Since 1/T = /, this also implies that v = A/.


